93 research outputs found

    Antimony uptake and toxicity in sunflower and maize growing in SbIII and SbV contaminated soil

    Get PDF
    Using pot experiments, we investigated the uptake of antimony (Sb) by sunflower (Helianthus annuus L. cv. Iregi), and maize (Zea mays L. cv. Magister) in two different soils, a potting mix and an agricultural soil. In one treatment Sb was added to the experimental soils as KSb(OH)6 ("SbV-treatment”) and in the other as Sb2O3 ("SbIII-treatment”). Soluble soil Sb concentrations were linearly related to the applied Sb rates, ranging from 0.02 (controls) to 175mgL−1 soil solution. Accumulation of Sb tended to be slightly higher in the SbV treatment in sunflower, while no difference in Sb uptake between the two Sb treatments was found in maize. The half maximal effective concentration (EC50) values derived from the dose-response curves were higher for the SbV than for the SbIII treatment when they were related to soluble soil Sb concentrations, but differences became insignificant when they were related to shoot Sb concentrations. Maize was substantially more sensitive to Sb toxicity than sunflower, indicating physiological differences in Sb tolerance between the two plant species. Our results show that on soils with high Sb contamination, as often found in shooting ranges, plants may suffer from Sb toxicit

    Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    Get PDF
    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. <br><br> Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality

    Long-term organic matter application reduces cadmium but not zinc concentrations in wheat

    Get PDF
    Wheat is a staple food crop and a major source of both the essential micronutrient zinc (Zn) and the toxic heavy metal cadmium (Cd) for humans. Since Zn and Cd are chemically similar, increasing Zn concentrations in wheat grains (biofortification), while preventing Cd accumulation, is an agronomic challenge. We used two Swiss agricultural long-term field trials, the “Dynamic-Organic-Conventional System Comparison Trial” (DOK) and the “Zurich Organic Fertilization Experiment” (ZOFE), to investigate the impact of long-term organic, mineral and combined fertilizer inputs on total and phytoavailable concentrations of soil Zn and Cd and their accumulation in winter wheat ( L.). “Diffusive gradients in thin films” (DGT) and diethylene-triaminepentaacetic acid (DTPA) extraction were used as proxies for plant available soil metals. Compared to unfertilized controls, long-term organic fertilization with composted manure or green waste compost led to higher soil organic carbon, cation exchange capacity and pH, while DGT-available Zn and Cd concentrations were reduced. The DGT method was a strong predictor of shoot and grain Cd, but not Zn concentrations. Shoot and grain Zn concentrations correlated with DTPA-extractable and total soil Zn concentrations in the ZOFE, but not the DOK trial. Long-term compost fertilization led to lower accumulation of Cd in wheat grains, but did not affect grain Zn. Therefore, Zn/Cd ratios in the grains increased. High Zn and Cd inputs with organic fertilizers and high Cd inputs with phosphate fertilizers led to positive Zn and Cd mass balances when taking into account atmospheric deposition and fertilizer inputs. On the other hand, mineral fertilization led to the depletion of soil Zn due to higher yields and thus higher Zn exports than under organic management. The study supports the use of organic fertilizers for reducing Cd concentrations of wheat grains in the long-term, given that the quality of the fertilizers is guaranteed

    Green manure and long-term fertilization effects on available soil zinc and cadmium and their accumulation by wheat (Triticum aestivum L.)

    Get PDF
    Zinc (Zn) deficiency in humans due to imbalanced diets is a global nutritional problem. It is especially widespread in populations of low-income countries depending on cereals as staple food. Grain Zn concentrations are particularly low in cereals grown on soils with low phytoavailable Zn concentrations. . Plant Zn uptake depends on soil properties such as pH, calcium carbonate, iron and manganese oxides, total Zn and organic matter content (OM). Soil pH, total Zn and OM can be influenced on farms with limited access to mineral fertilizers through organic matter management practises. In this study, we investigated to what extent green manure application could increase soil Zn availability and wheat grain Zn concentrations (biofortification) on soil with different long-term fertilizer management

    Deployment analysis of a pentagonal tensegrity-ring module

    Get PDF
    Ring modules are tensegrity systems that include a single strut circuit and recently, they have been shown to be viable systems for pedestrian bridges. Furthermore, their shape can be controlled using cable actuation. This paper focuses on the deployment of a pentagonal tensegrity-ring module. A geometric study is conducted to identify the deployment-solution space without strut contact. Deployment paths and actuation requirements are explored. The structural response of the module during deployment is analyzed using a modified dynamic relaxation method

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 Year Darwin Prospective Study

    Get PDF
    Melioidosis is an occupationally and recreationally acquired infection important in Southeast Asia and northern Australia. Recently cases have been reported from more diverse locations globally. The responsible bacterium, Burkholderia pseudomallei, is considered a potential biothreat agent. Risk factors predisposing to melioidosis are well recognised, most notably diabetes. The Darwin prospective melioidosis study has identified 540 cases of melioidosis over 20 years and analysis of the epidemiology and clinical findings provides important new insights into this disease. Risk factors identified in addition to diabetes, hazardous alcohol use and chronic renal disease include chronic lung disease, malignancies, rheumatic heart disease, cardiac failure and age ≥50 years. Half of patients presented with pneumonia and septic shock was common (21%). The decrease in mortality from 30% in the first 5 years of the study to 9% in the last five years is attributed to earlier diagnosis and improvements in intensive care management. Of the 77 fatal cases (14%), all had known risk factors for melioidosis. This supports the most important conclusion of the study, which is that melioidosis is very unlikely to kill a healthy person, provided the infection is diagnosed early and resources are available to provide appropriate antibiotics and critical care where required
    corecore