59 research outputs found

    The future of affordable cancer immunotherapy

    Get PDF
    The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of “cold tumors” with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the “sequence everything” approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies

    Preclinical evaluation of NF-kappa B-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination

    Get PDF
    Background: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host’s genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor antigens is an active form of immunotherapy, which intends to direct the immune system towards tumors which express the respective vaccination antigens. Methods: Cytokine-matured monocyte-derived DCs of healthy donors and MCC patients were electroporated with mRNA encoding the truncLT. To permit major histocompatibility complex (MHC) class II next to class I presentation, we used an RNA construct in which the antigen was fused to a DCLamp sequence in addition to the unmodified antigen. To further improve their immunogenicity, the DCs were additionally activated by co-transfection with the constitutively active nuclear factor (NF)-κB activator caIKK. These DCs were used to stimulate autologous CD8 + T-cells or a mixture of CD4 + and CD8 + T-cells. Then the percentage of T-cells, specific for the truncLT, was quantified by interferon (IFN)γ ELISpot assays. Results: Both the truncLT and its DCLamp-fusion were detected within the DCs by flow cytometry, albeit the latter required blocking of the proteasome. The transfection with caIKK upregulated maturation markers and induced cytokine production. After 2–3 rounds of stimulation, the T-cells from 11 out of 13 healthy donors recognized the antigen. DCs without caIKK appeared in comparison less potent in inducing such responses. When using cells derived from MCC patients, we could induce responses for 3 out of 5 patients; however, here the caIKK-transfected DCs did not display their superiority. Conclusion: These results show that optimized DCs are able to induce MCV-antigen-specific T-cell responses. Therapeutic vaccination with such transfected DCs could direct the immune system against MCC

    Rapid Induction of Tumor-specific Type 1 T Helper Cells in Metastatic Melanoma Patients by Vaccination with Mature, Cryopreserved, Peptide-loaded Monocyte-derived Dendritic Cells

    Get PDF
    There is consensus that an optimized cancer vaccine will have to induce not only CD8+ cytotoxic but also CD4+ T helper (Th) cells, particularly interferon (IFN)-γ–producing, type 1 Th cells. The induction of strong, ex vivo detectable type 1 Th cell responses has not been reported to date. We demonstrate now that the subcutaneous injection of cryopreserved, mature, antigen-loaded, monocyte-derived dendritic cells (DCs) rapidly induces unequivocal Th1 responses (ex vivo detectable IFN-γ–producing effectors as well as proliferating precursors) both to the control antigen KLH and to major histocompatibility complex (MHC) class II–restricted tumor peptides (melanoma-antigen [Mage]-3.DP4 and Mage-3.DR13) in the majority of 16 evaluable patients with metastatic melanoma. These Th1 cells recognized not only peptides, but also DCs loaded with Mage-3 protein, and in case of Mage-3DP4–specific Th1 cells IFN-γ was released even after direct recognition of viable, Mage-3–expressing HLA-DP4+ melanoma cells. The capacity of DCs to rapidly induce Th1 cells should be valuable to evaluate whether Th1 cells are instrumental in targeting human cancer and chronic infections

    Vaccination with Mage-3a1 Peptide–Pulsed Mature, Monocyte-Derived Dendritic Cells Expands Specific Cytotoxic T Cells and Induces Regression of Some Metastases in Advanced Stage IV Melanoma

    Get PDF
    Dendritic cells (DCs) are considered to be promising adjuvants for inducing immunity to cancer. We used mature, monocyte-derived DCs to elicit resistance to malignant melanoma. The DCs were pulsed with Mage-3A1 tumor peptide and a recall antigen, tetanus toxoid or tuberculin. 11 far advanced stage IV melanoma patients, who were progressive despite standard chemotherapy, received five DC vaccinations at 14-d intervals. The first three vaccinations were administered into the skin, 3 × 106 DCs each subcutaneously and intradermally, followed by two intravenous injections of 6 × 106 and 12 × 106 DCs, respectively. Only minor (less than or equal to grade II) side effects were observed. Immunity to the recall antigen was boosted. Significant expansions of Mage-3A1–specific CD8+ cytotoxic T lymphocyte (CTL) precursors were induced in 8/11 patients. Curiously, these immune responses often declined after the intravenous vaccinations. Regressions of individual metastases (skin, lymph node, lung, and liver) were evident in 6/11 patients. Resolution of skin metastases in two of the patients was accompanied by erythema and CD8+ T cell infiltration, whereas nonregressing lesions lacked CD8+ T cells as well as Mage-3 mRNA expression. This study proves the principle that DC “vaccines” can frequently expand tumor-specific CTLs and elicit regressions even in advanced cancer and, in addition, provides evidence for an active CD8+ CTL–tumor cell interaction in situ as well as escape by lack of tumor antigen expression

    The price of tumor control

    Get PDF
    Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers. Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientś delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment. The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects

    Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1 / Raf Kinase inhibitory protein

    Get PDF
    Item does not contain fulltextImmunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (PEBP1)/Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low PEBP1 expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease

    Generation of an Oncolytic Herpes Simplex Virus 1 Expressing Human MelanA

    Get PDF
    Robust anti-tumor immunity requires innate as well as adaptive immune responses. We have shown that plasmacytoid dendritic cells develop killer cell-like activity in melanoma cell cocultures after exposure to the infectious but replication-deficient herpes simplex virus 1 (HSV-1) d106S. To combine this innate effect with an enhanced adaptive immune response, the gene encoding human MelanA/MART-1 was inserted into HSV-1 d106S via homologous recombination to increase direct expression of this tumor antigen. Infection of Vero cells using this recombinant virus confirmed MelanA expression by Western blotting, flow cytometry, and immunofluorescence. HSV-1 d106S-MelanA induced expression of the transgene in fibroblast and melanoma cell lines not naturally expressing MelanA. Infection of a melanoma cell line with CRISPR-Cas9-mediated knockout of MelanA confirmed de novo expression of the transgene in the viral context. Dependent on MelanA expression, infected fibroblast and melanoma cell lines induced degranulation of HLA-matched MelanA-specific CD8+ T cells, followed by killing of infected cells. To study infection of immune cells, we exposed peripheral blood mononuclear cells and in vitro-differentiated macrophages to the parental HSV-1 d106S, resulting in expression of the transgene GFP in CD11c+ cells and macrophages. These data provide evidence that the application of MelanA-encoding HSV-1 d106S could enhance adaptive immune responses and re-direct MelanA-specific CD8+ T cells to tumor lesions, which have escaped adaptive immune responses via downregulation of their tumor antigen. Hence, HSV-1 d106S-MelanA harbors the potential to induce innate immune responses in conjunction with adaptive anti-tumor responses by CD8+ T cells, which should be evaluated in further studies

    Immune Checkpoint Blockade for Metastatic Uveal Melanoma: Re-Induction following Resistance or Toxicity

    Get PDF
    Re-induction with immune checkpoint blockade (ICB) needs to be considered in many patients with uveal melanoma (UM) due to limited systemic treatment options. Here, we provide hitherto the first analysis of ICB re-induction in UM. A total of 177 patients with metastatic UM treated with ICB were included from German skin cancer centers and the German national skin cancer registry (ADOReg). To investigate the impact of ICB re-induction, two cohorts were compared: patients who received at least one ICB re-induction (cohort A, n = 52) versus those who received only one treatment line of ICB (cohort B, n = 125). In cohort A, a transient benefit of overall survival (OS) was observed at 6 and 12 months after the treatment start of ICB. There was no significant difference in OS between both groups (p = 0.1) with a median OS of 16.2 months (cohort A, 95% CI: 11.1–23.8) versus 9.4 months (cohort B, 95% CI: 6.1–14.9). Patients receiving re-induction of ICB (cohort A) had similar response rates compared to those receiving ICB once. Re-induction of ICB may yield a clinical benefit for a small subgroup of patients even after resistance or development of toxicities

    Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein

    Get PDF
    Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (_PEBP1_)/ Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low _PEBP1_ expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of _PEBP1_ after, but not prior to, DC vaccination. Moreover, the change in _PEBP1_ expression upon vaccination correlated well with survival. Further analyses revealed that _PEBP1_ expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including _STAT3, NOTCH1,_ and _MAPK1_. Concordantly, _PEBP1_ inversely correlated with the myeloid/ lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease

    Nectin-1 Expression Correlates with the Susceptibility of Malignant Melanoma to Oncolytic Herpes Simplex Virus In Vitro and In Vivo

    Get PDF
    Talimogene laherparepvec (T-VEC), an oncolytic herpes simplex virus, is approved for intralesional injection of unresectable stage IIIB/IVM1a melanoma. However, it is still unclear which parameter(s) predict treatment response or failure. Our study aimed at characterizing surface receptors Nectin-1 and the herpes virus entry mediator (HVEM) in addition to intracellular molecules cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) as potential bio-markers for oncolytic virus treatment. In 20 melanoma cell lines, oncolytic activity of T-VEC was correlated with the expression of Nectin-1 but not HVEM, as evaluated via flow cytometry and immunohistochemistry. Knockout using CRISPR/Cas9 technology confirmed the superior role of Nectin-1 over HVEM for entry and oncolytic activity of T-VEC. Neither cGAS nor STING as evaluated by Western Blot and immunohistochemistry correlated with T-VEC induced oncolysis. The role of these biomarkers was retrospectively analyzed for the response of 35 cutaneous melanoma metastases of 21 patients to intralesional T-VEC injection, with 21 (60.0%) of these lesions responding with complete (n = 16) or partial regression (n = 5). Nectin-1 expression in pretreatment biopsies significantly predicted treatment outcome, while the expression of HVEM, cGAS, and STING was not prognostic. Altogether, Nectin-1 served as biomarker for T-VEC-induced melanoma regression in vitro and in vivo
    • …
    corecore