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The treatment of cancer was revolutionized within the last two decades by

utilizing the mechanism of the immune system against malignant tissue in so-

called cancer immunotherapy. Two main developments boosted cancer

immunotherapy: 1) the use of checkpoint inhibitors, which are characterized

by a relatively high response rate mainly in solid tumors; however, at the cost of

serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells,

which were shown to be very efficient in the treatment of hematologic

malignancies, but failed to show high clinical effectiveness in solid tumors until

now. In addition, active immunization against individual tumors is emerging, and

the first products have reached clinical approval. These new treatment options

are very cost-intensive and are not financially compensated by health insurance

in many countries. Hence, strategies must be developed to make cancer

immunotherapy affordable and to improve the cost-benefit ratio. In this

review, we discuss the following strategies: 1) to leverage the antigenicity of

“cold tumors” with affordable reagents, 2) to use microbiome-based products as

markers or therapeutics, 3) to apply measures that make adoptive cell therapy

(ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies

that offer cheaper platforms, such as RNA- or peptide-based vaccines

and vaccines that use shared or common antigens instead of highly personal

antigens, 5) to use a small set of predictive biomarkers instead of the “sequence

everything” approach, and 6) to explore affordable immunohistochemistry

markers that may direct individual therapies.
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1 Introduction

Immunotherapy has changed the cancer treatment scenario and

revolutionized tumor immunology. Immunotherapy treatments, such

as adoptive T-cell therapy (ACT) or the use of immune checkpoint

inhibitors (ICIs), are now well-established components of the toolbox

of cancer treatments, significantly improving longevity in a substantial

proportion of patients (1–3). The vast amount of ongoing research in

the field is expected to enhance the essential role of immunotherapy in

cancer treatment.

However, with the advancing success of cancer immunotherapy, it

is becoming clear that a significant drawback of current

immunotherapies is their high expense. To enable the wide usage of

immunotherapy, efforts will eventually have to be centered on

developing immunotherapy treatments that are significantly cheaper

and affordable to larger populations worldwide.

Getting a cancer immunotherapy treatment costs more than a

house in many cities in the US and is more expensive than putting a

few children through private college. The average cost of cancer

drugs increased from $50,000 per patient in the mid-1990s to

$250,000. That is four times the median US household annual

income. Immunotherapies often cost more than $100,000 per

patient. For some of the newest immunotherapies, the price tag is

even steeper: When including the value of the medical support

necessary to deliver these treatments, a price tag of $850,000 per

patient is not unheard of (4). For example, although the wholesale

acquisition cost of CAR-T-cell therapies to treat B-cell lymphoma is

$373,000, a new study by Prime Therapeutics of real-world data
Frontiers in Immunology 02
found that the total cost averages more than $700,000 and can

exceed $1 million in some cases (5).

Increasingly, approaches to treat solid tumors and hematological

malignancies involve the concurrent administration of several

products with distinct but complementary mechanisms of action in

combination or close sequence as part of a regimen that also seeks to

minimize the development of drug resistance (6–8). The use of

combined immunotherapies means that costs can quickly double

or triple. Some recent examples include the addition of pertuzumab

to trastuzumab for the treatment of human epidermal growth factor

receptor-2 (HER-2)-positive breast cancer and the use of

programmed cell death protein (PD-1) and programmed cell death

ligand (PD-L1) inhibitors in combination with anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) therapies in metastatic

melanoma. This trend presents serious challenges for Health

Technology Assessment (HTA) bodies and payers. Combination

regimens are expected to increase over the next few years (7, 9).

Almost all information regarding the costs of immunotherapy is

based on data from OECD countries; however, access to oncology

medicines remains unequal across OECD/EU countries. The charges

in non-OECD countries will probably be higher and may enjoy less

support from health or insurance institutions or drug companies.

Additionally, there is little doubt that the population of third-world

countries will mostly be unable to cope with such expenses.

The future of cancer immunotherapy will largely depend on the

ability of researchers to make it affordable to larger populations.

This review summarizes some scientific suggestions for making this

happen (Figure 1).
FIGURE 1

Factors that contribute to the high costs of individualized medicinal products and possibilities for cost reduction. The production of cellular
therapeutics usually takes place on a per-patient basis, i.e. each patient requires a personal small-scale production of the individualized medicinal
product in a specialized facility under labor-intensive documentation. Source materials are usually patient-derived living cells, which increases the
logistic effort. Next generation sequencing and other omics data are exploited to define individual antigens, which are synthesized in a personalized
manner. Alternatively, therapeutic components could be produced at larger scale, increasing the economic efficiency, creating a warehouse of
constituents. Using individual patient data, possibly exploited with the help of Artificial Intelligence (AI) to identify a manageable set of informative
markers, an individual combination of these elements is selected to generate the individualized product. When possible, truly individual components
are avoided or reduced to a minimum, including patient-derived cells. To improve the efficiency of the treatment further, the in depth data analysis
can propose the use of established thus cheaper drugs in combination with the advanced individualized medicinal products. See the main text for
further details. The Motifolio Scientific Illustration Toolkit was used for the generation of this figure.
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2 Leverage the antigenicity of “cold
tumors” with affordable reagents

One of the most consistent predictors for the success of immune

checkpoint inhibitors (ICI) in metastatic patients is the general load

of missense mutations and the density of lymphocytic infiltrate in

the tumors (10–12). The accepted paradigm for the contribution of

non-synonymous mutations or frameshifts is that they generate

altered peptide epitopes that work as neo-antigens (13–15). Unlike

wild-type sequences, these neo-antigens have not induced a

tolerizing mechanism. Consequently, T-cell clones can emerge,

which recognize these neo-epitopes with high affinity and

effectively destroy cancer cells (16, 17). The power of neo-

antigen-cognate T cells in the clinic was shown in several

pioneering works by Rosenberg et al., targeting four mutant

proteins in a patient with breast cancer (NCT01174121), and by

Tran et al., targeting mutant KRAS G12 (18–20).

The situation is very different in cancers referred to as “cold

tumors” or “immune deserts,” two descriptions relating to the

scarcity of immune targets and effector T cells. Among these are

uveal melanoma, pancreatic cancer, ovarian and breast cancers, and

any cancer with loss of HLA class I, mutations in b2 microglobulin,

and defects in antigen presentation (21–24).

Neo-epitopes are not solely generated by mutations. In the

absence of genomic-encoded antigens, the mRNA transcript, or the

actual protein product itself, is sought as a source for immunogenic

neo-epitopes. The concept that defects in any of the ribosomal

proteins (DRiPs) will yield impaired peptides and enrich the

immune-peptidome to be detected by the immune system was

described by Yewdell et al. but was not leveraged towards a therapy

(25). Admon et al. described that, following viral infection, large

numbers of HLA class I peptides derive from DRiPs (26). Thus, it

was proposed that damaging ribosomal proteins will enhance the

anti-viral immune response; this may also apply to cancers (27).

A renewed interest in this approach was evoked by Abdel-

Wahab and colleagues, showing that in blood malignancies with

mutant splicing factors, novel splicing-derived proteins may appear

(28). Similarly, Oka et al. show in lung cancer cell lines that

ablations of the nonsense-mediated mRNA decay (NMD) factor

UPF1, and a splicing factor, SF3B1, are found to increase the

proportion of aberrant transcripts (29). Taking one further step

forwards, Lu et al. used a pharmacological compound, indisulam,

which enhances the degradation of the RNA-binding motif protein

39 (RBM39), which often is upregulated in cancers (30). Indisulam

and other sulfonamides can affect splicing in tumor cells at a

concentration that may be safe to use in the clinic. Most

intriguingly is the demonstration that true neo-epitopes emerged

by clinical-grade pharmaceutics, primarily due to intron retention.

In summary, DriPs and peptide products of splice-disrupted

mRNA can be induced in cancer cells. This especially applies to

cancers harboring oncogenic splicing factor mutations, which have

limited benefit from ICI: acute myeloid leukemias, uveal melanoma,

myelodysplastic syndrome, and non-small-cell lung cancer. Rapid

screens of small molecule libraries and antitumor antibiotics are

highly encouraged. If issues of patenting and IP are put aside, these
Frontiers in Immunology 03
compounds may be cheap to produce and replace the expensive cell

therapies that are among the few options for these “cold” tumors.
3 Microbiome-based products

There is growing evidence that gut microbiota is related to

immunotherapy outcomes. For example, it has been shown that

transcriptionally expressed metagenomic pathways in the gut

microbiome are related to progression-free survival in melanoma

(31). Results from a study by Nomura et al. suggest that fecal short-

chain fatty acid (SCFA) concentrations may be associated with PD-

1 inhibitor efficacy; thus, SCFAs may be the link between the gut

microbiota and PD-1 inhibitor treatment outcome. Because fecal

examinations are entirely non-invasive, they may be applicable for

routine monitoring of patients (32). Recently, a correlation between

gut bacterial composition and prognosis in hepatocellular

carcinoma patients suggested a potential role for the gut

microbiome as a prognostic marker for the response to

nivolumab (33) and the response to anti-CD19 CAR-T-cell

therapy in patients with B-cell malignancies (34). Another study

demonstrated that secondary resistance and immune-related

adverse events are related to longitudinal dynamics of the

intestinal microbiota in patients with advanced malignancies (35).

That the gut microbiome can affect the immune response was

already shown by Gur et al. in 2015. They found that a bacterium

from the oral cavity directly interacted with TIGIT to diminish NK-

and T-cell functionality (36). Since then, an emerging body of

evidence has implicated host-intrinsic microorganisms in

influencing the response to cancer immunotherapy (37). Attempts

to translate microbiome-based therapies, e.g., in melanoma

patients, have mild success (NCT03353402) (38, 39). Still, the gut

microbiota diversity in individuals of different ethnicities and

geographic areas makes it difficult to standardize therapeutic

formulations. Despite these problems, techniques of fecal

transplantation will remain cheap and accessible and are

currently being tested in several clinical trials (NCT05502913

(40), NCT05286294, NCT04975217). The potential synergy

between gut bacteria and ICI will not only increase the response

rate but may shorten the time to achieve these benefits, which is also

tested in many clinical trials, e.g., in liver cancer (NCT05750030,

NCT05690048) (41), lung cancer (NCT05669846, NCT04924374),

colorectal cancer (NCT05279677, NCT04729322) (42), melanoma

(NCT05251389 (43) , NCT04988841 , NCT04577729 ,

NCT03341143) (44), kidney cancer (NCT04758507) (45),

gastrointestinal cancer (NCT04130763) (46), prostate cancer

(NCT04116775), and mesothelioma (NCT04056026) (47).
4 Can adoptive cell therapy
be made affordable?

Cell therapy consists of cellular “drugs” prepared mostly in local

production facilities. The long manufacturing time, complex

delivery systems, and discrete and per-patient production are only
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some of the hurdles affecting the time-to-market and

manufacturing costs of cell-based therapeutics.

Most cell therapies developed in recent years, approved and in

clinical pipelines, use autologous cell products. The personalized

generation of cellular products tailored to fit a specific antigen or

disease condition has advanced immensely, with feasible

applications. Although autologous cells benefit from the

advantage of avoiding rejection, using allogeneic cells offers

scalable production from abundant cell sources. Therefore,

significantly simplifying and expediting manufacturing turns the

product more affordable and thus allows many more patients to be

treated. Albeit these advantages, allogeneic cells trigger graft versus

host disease (GvHD) or vice versa- host versus grafted lymphocytes,

due to HLA mismatched a/b T cells.

Using allogeneic cell sources that elicit minimal immunogenic

reactions is one approach for reducing GvHD. NK cells are one of

the options for this type of cell source. Pioneering work from the

Ruggeri group shows that KIR-mismatched alloreactive donor NK

cells protected patients from AML relapse with no GvHD (48). NK

cells also do not produce IL-1 and IL-6, the main cytokines involved

in cytokine release syndrome (CRS), minimizing one of the main

adverse events of current cell therapy (49). Allogeneic NK CD19

chimeric antigen receptor (CAR) cells derived from cord blood have

a 73% response rate without significant toxic effects in lymphoma

and chronic lymphatic leukemia (CLL) patients (50). Many ongoing

clinical trials use CAR-NK targeting various antigens, including

CD19 (e.g., NCT05487651, NCT05410041), EGFR, EpCAM, GD2,

mesothelin (NCT03692637), and HSP70 (51).

The ability of iNKT cells to rapidly respond to lipid antigens

and secrete a wide variety of cytokines has placed these cells at the

frontlines of many types of immune responses (52), including

cytotoxic responses, which can lead to tumor lysis, recruitment of

other innate- and adaptive-related immune cells, and regulation of

immunosuppression (53). These responses, robust in mouse models

and humans, are problematic in cancer patients since their number

in the peripheral blood of these patients is significantly decreased

(54–56). In addition, their functionality is hampered in these

patients, as shown by their lower secretion of IFNg and a

tendency to a Th2 phenotype. These facts make their potential

application for human immunotherapy problematic (52, 54).

Alternatively, gd T cells can be used as an allogenic source since

they do not recognize MHC molecules and are hence not

alloreactive (57–59). It was shown that gd T cells – retrovirally

transduced or RNA-transfected with an ab TCR against, e.g.,

cytomegalovirus (CMV) or a tumor antigen – were highly

functional in vitro (60, 61) and in mice (62, 63). Also, CARs were

functionally introduced into gd T cells (61) and are even tested in

clinical trials (NCT04107142, NCT04735471 (64), NCT05302037).

An additional advantage of CAR-transfected gd T cells is that they

produce lower quantities of cytokines compared to CAR-

transfected ab T cells, reducing the risks of CRS (61).

Recently, a population of unconventional innate-like T cells,

mucosal-associated invariant (MAIT) cells, has elicited hopes for

efficient off-the-shelf, allogeneic immunotherapy for two main

reasons. First, their semi-invariant ab T-cell receptor recognizes

small-molecule biosynthetic derivatives of riboflavin synthesis
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presented on the restriction molecule major histocompatibility

complex (MHC)-related protein-1 (MR1). As a result, MAIT cells

do not recognize autoantigens or induce graft-versus-host disease

(GvHD). Second, MAIT cells are strong cytotoxic cells that secrete

pro-inflammatory cytokines and lyse infected cells using granzyme

B and perforin. Taken together, these characteristics justify the

efforts and enthusiasm that are being invested in this population to

achieve a new approach to immunotherapy (65).

Mesenchymal stem cells (MSCs) are also considered a source of

evasive immune cells. They are highly immunosuppressive,

diminishing T-cell activation and antigen-presenting cell

maturation and, in this way, they delay allo-rejection (66).

However, since MSCs have been used to deliver cytotoxic

reagents into tumors with limited efficacy (67), further studies are

needed to exploit their therapeutic potential.

A different approach for generating universal cell sources

exploits the vast advances in cell engineering, turning allogeneic

cellular products into less immunogenic ones. Genome editing

using CRISPR-Cas9 or similar editing systems targeting the b2-
microglobulin HLA class I molecule and the T-cell receptor (TCR)

in combination with CAR expression has been used to create

universal CAR-T cells that are less prone to attack autologous T

cells (68). These combined efforts reduce GvHD but also host versus

graft (HvG), allowing for a broader therapeutic window for CAR-T

cells. The CAR construct is often introduced into the TRAC,

TRBC1, or TRBC2 locus to create TCR knockout cells and

regulate the CAR expression through the TCR promoter (69). A

retrospective comparison between auto-CD19 CARs and allo-CD19

CARs showed only minor GvHD in allo-CARs. Nonetheless, the

response rate was favorable toward the allo-CAR with 100% at nine

months follow-up compared to 88% in the auto-CAR. This

advantage was attributed to the combined signals in allo-CAR of

TCR and CAR (70). Clinical testing of allogeneic CAR-T trials

directed at hematological and solid tumors is ongoing in many

centers. Targets for these CAR-T trials include CD19, BCMA (71),

and CD20 in hematological tumors, and GD2, mesothelin

(NCT03545815), CD70 (NCT05795595, NCT04438083,

NCT04696731), MUC1-C [NCT05239143 (72)], and NKG2DL in

solid tumors.

Another option for producing off-the-shelf cell products is

performing genetic editing on induced pluripotent stem cells

(iPSCs) before cellular differentiation. Following manipulation,

these cells can be differentiated into many types, including T cells,

NK cells, and dendritic cells. Allo-iPSCs can be used from either a

matched homogenous genetic background individual or following

allele-specific editing. These cells can be manipulated to avoid

GvHD and HvG by HLA pseudo-homozygosity, escaping

recognition by both T and NK cells (73). Further manipulations,

such as the expression of CD47 and HLA-G, can mediate escape

from NK and macrophages, creating ‘universal’ iPSCs (74). Clinical

trials using NK derived from iPSCs were completed or are ongoing

in solid tumors and hematological malignancies (NCT03841110,

NCT04630769, NCT05182073).

Hematopoietic stem cells (HSCs) possess unlimited expansion

capacity and can differentiate into multiple cell types. Conventional

sources of HSCs include adult bonemarrow and the umbilical cord of
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newborns. An additional method to achieve a high number of HSCs

uses iPS cells, which have high scalability due to the robustness of

their cell culture conditions. HSCs derived from cord blood or bone

marrow are currently being evaluated to manufacture CAR-HSCs,

which can differentiate into effector cells, including CAR-T and CAR-

NK cells. Interestingly, stem cell-derived T cells have a unique

cytokine profile with fewer safety risks (75, 76).

The production costs of TCR-T or CAR-T cells can be reduced

by transfection of mRNA encoding the receptors into T cells instead

of using viral transduction for receptor transfer. In addition to being

an easier process than viral transduction, receptor-RNA

transfection of T cells (or any other cells) can even be performed

decentralized with, e.g., closed electroporation systems, making

local and cheaper production possible (77). Another advantage is

that CAR-RNA transfection has a favorable toxicity profile

considering possible on-target/off-tumor reactions due to its

transient effects. Two clinical studies showed that on-target/off-

tumor toxicity could cause severe problems and even death if the

receptor is introduced by stable viral transduction (78, 79). By

transient transfection of T cells, the receptor expression is

temporarily restricted, rendering potential off-target and on-

target/off-tumor toxicity also transient. The CAR-RNA transfer

strategy is especially attractive in preclinical and phase I clinical

trials exploring new tumor antigens for CAR-T-cell therapy with an

unknown clinical safety profile. The mRNA transfection strategy for

CARs was proposed by us some time ago (80) and has, in the

meantime, been applied in several clinical trials in patients with

breast cancer and melanoma (NCT01837602 NCT03060356;

targeting c-MET) (81) and mesothelioma, pancreatic cancer, and

ovarian cancer (NCT03608618, NCT01897415, NCT01355965

targeting mesothelin) (82–84). RNA transfection was even

explored with non-solid tumors using CD19 and CD123 as target

antigens (NCT02277522, NCT02624258, NCT02623582) (85). The

mRNA-CAR-T cells in these studies were well tolerated, migrated

to primary and metastatic tumor sites, showed clinical antitumor

activity, and showed no evidence of on-target/off-tumor toxicity

against normal tissues (81, 82). However, the transient receptor

expression per se necessitates repetitive injections. Unlike virally

transduced cells, which have to be given only once and proliferate in

the patient’s body, RNA-transfected cells will lose CAR expression

and must be replenished to maintain cytolytic pressure on the

tumor. This might, in turn, increase the treatment costs if many

more cells need to be produced.

The significant number of approaches being actively evaluated

to make adoptive cell therapy affordable, only some of which are

described here, point toward the high expectations of the scientific

community and overall raise hopes for widespread immunotherapy,

which may be shortly more than a wishful dream.
5 RNA-based therapeutic
cancer vaccines

In the past decade, RNA therapeutics have witnessed a true

revolution. Several RNA-based therapies have been approved by the

FDA for treating genetic diseases, with unprecedented success, as in
Frontiers in Immunology 05
spinal muscular atrophy (86–88). Moreover, recent years showed

the world that RNA-based therapies, specifically mRNA vaccines,

can be the answer to a pandemic and save the lives of millions.

However, in the field of cancer treatments, RNA therapies are

lagging. The rapidly adaptable mRNA vaccines against Covid-19

ended years of concerns regarding the large-scale feasibility of

RNA-based therapeutics. In addition to a vast amount of clinical

data on safety and efficacy, pharmaceutical companies augmented

their production capabilities, and new solutions to incurable

diseases, mainly cancer, can now be sought.

However, due to its high antigen heterogeneity, cancer

represents a significant challenge in the design of therapeutic

cancer vaccines. RNA-based cancer vaccines can encode

individually mutated neo-antigens, resulting in their presentation,

which is a very personalized medicinal product, and, therefore, very

cost intensive. Finding these mutations involves high costs for the

sequencing of the tumor, usually also involving challenging logistics

and centralized sequencing facilities. A possibility to reduce this

expense may be the use of new decentralized 3rd-generation

sequencing technologies which offer much better cost efficiency.

Very recently, Moderna and Merck announced that mRNA-4157/

V940, an investigational personalized mRNA cancer vaccine, in

combination with Keytruda® (Pembrolizumab), was approved as a

breakthrough therapy by the FDA for adjuvant treatment of

patients with high-risk melanoma following complete resection

(NCT03897881) (89, 90). Several other clinical trials, both in the

adjuvant and metastatic setting, are running (e.g., NCT04161755 in

pancreatic cancer (91), NCT02316457 in triple-negative breast

cancer, NCT03815058 in melanoma, NCT04486378 in colorectal

cancer, NCT03480152 in gastrointestinal cancer (92),

NCT05761717 in hepatocellular carcinoma, and NCT03289962 in

several solid tumors).

Alternatively, an off-the-shelf approach can also be chosen if the

vaccines are based on prepared mRNAs encoding non-mutated

antigens often expressed in the tumor, reducing costs. Examples of

this exist for ovarian carcinoma treated with a liposome-formulated

mRNA vaccine encoding three ovarian carcinoma tumor-associated

antigens (TAA) (NCT04163094), melanoma treated with a

liposome-formulated mRNA vaccine encoding four selected

malignant melanoma-associated antigens: New York-ESO 1 (NY-

ESO-1), tyrosinase, melanoma-associated antigen A3 (MAGE-A3),

and trans-membrane phosphatase with tensin homology (TPTE)

(NCT02410733) (93), prostate cancer (NCT04382898 (targeting

five different antigens), NCT00831467), and non-small cell lung

cancer (NCT05142189, NCT03164772 (with six target antigens),

NCT00923312 (with five target antigens). However, a “one size fits

all”-tumor vaccine formulation does not exist. Since individual

tumors from even a narrowly defined cancer type still vary

substantially in their antigen expression even at different sites,

any pre-selection of defined antigens will always be a compromise

between comprehensiveness and cost efficiency. Here, an

individually defined cocktail prepared from an off-the-shelf tumor

antigen warehouse could be a more cost-efficient solution (94).

Although this requires determining the individual tumor’s antigen

expression again, decentral field sequencing technologies like the

Oxford Nanopore™ platform could offer a cheaper option.
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Adding an adjuvant is beneficial to achieve an effective immune

response against a cancer vaccine antigen. Several approaches are

followed to reduce costs for such adjuvants. For example, one can

re-purpose effective immune adjuvants with no intellectual property

(e.g., Freund’s, BCG, Alum). Moreover, one can also combine the

RNA-based vaccines described above with a fraction of double-

stranded (ds)RNA resulting in an adjuvant-like stimulus through

NFkB activation by Toll-like receptor 3 (TLR3), which binds to the

dsRNA (95), or by complexing a fraction of the mRNA with

protamine, which then acts as an adjuvant that induces an

effective immune response through TLR7-mediated signaling

(96, 97).

Over the last 20 years, a well-established approach was to

transfect dendritic cells (DCs) with mRNA ex-vivo and inject

those cells to induce antitumor immune responses. Although a

slow but constant improvement concerning immunologic activity

was achieved during this period, this technology never made it to a

broader clinical application. The ex-vivo production of such an

individualized cellular product never met a sufficient cost-effectivity

ratio to be commercially attractive. The only DC-based cancer

vaccine that received clinical approval was sipuleucel-T

(Provenge™) produced by Dendreon Corporation, which

consisted of a DC-enriched PBMC fraction pulsed with a GM-

CSF/PAP fusion molecule and was discontinued for commercial

reasons (98, 99). Performed under the required high standards of

good manufacturing practice (GMP), the production costs to treat

one patient are within the range of ten thousands of dollars without

any revenues. Retail prices would be significantly higher if a

customary profit margin was intended. Nevertheless, the highly

controlled surrounding of the large number of trials provided a

cornucopia of valuable information and insights translated into

vaccination approaches (100, 101), in which the antigen was given

to target APCs in vivo for expression of the antigen (102). The rapid

implementation of mRNA-based vaccines against Covid-19 would

not have been possible without all the existing data generated in the

field of mRNA-based tumor vaccination both with ex-vivo

transfected DCs and via the application of mRNA-based

formulations in vivo.

The following hurdles must be tackled to facilitate affordable

mRNA-based cancer vaccines: 1) Tumor sequencing must be fast

and cheap to allow a tailored individual selection of antigens from a

pre-produced warehouse of mRNAs, possibly via panel sequencing

on decentralized field sequencing devices. 2) RNA production must

be economical. The production of large batches of mRNA can

achieve this. However, producing individual mRNAs for only one

patient will not be feasible. 3) RNA must be formulated to be stable

at -20°C to circumvent excessively complex transport and storage

logistics. 4) The other components of the vaccine formulation must

be affordable. 5) The additional expenses for GMP compliance must

be limited. While safety must be maintained, bureaucracy must

be reduced.

The last section focused on RNA-based cancer vaccines,

although there are other formats in which antigens may be

provided. Specific epitopes can be delivered as synthetic peptides
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(101, 103), and whole tumor antigens as full-length proteins. Even

complete tumor cells can be lysed and used as antigen source. All

these approaches have been tested in humans, while peptides appear

to be the most promising competitor of RNA (103). Although we

focused on RNA-based strategies in the section above, all

limitations, lines of reasoning, and rationales discussed more or

less apply to the latter approaches of cancer vaccination as well.

6 A small set of predictive
biomarkers instead of the
“sequence everything” approach

Current ly , the most appl ied approach in cancer

immunotherapy is targeting immune checkpoints or immune

regulatory molecules, which have shown high success rates in

several clinical trials. Melanoma is a highly mutated cancer with a

wide frequency range, of 0.1-100 somatic mutations per Megabase

(MB). In a study on 3083 matched tumor-normal pairs from 27

different tumor types, melanoma was found to have the highest

mutational frequency of all cancers analyzed (104). Two studies that

performed whole-exome sequencing on tumor samples of

melanoma patients showed improved clinical outcomes after

being treated with checkpoint inhibitors in patients with a high

mutational burden (105, 106). Therefore, whole-exome sequencing

is being used by some groups to identify mutational load as a

biomarker to give patients the advantage of immunotherapy.

On the other hand, studies using smaller gene panels (170-500

genes) have shown that the total exomic mutational burden can be

extrapolated, and, more important, also the response to

immunotherapy can be predicted. In a study with 65 melanoma

patients, the mutational burden calculated using FoundationOne

(315 genes) was found to be significantly associated with treatment

response and survival, particularly at >20 mutations/MB) (107).

Therefore, determining mutational load using smaller panels may

also be a biomarker of response to immunotherapy with much

lower costs. An additional benefit of such sequencing panels may lie

in a better selection of therapeutic alternatives besides

immunotherapy. Regulatory pathology and oncology bodies such

as the College of American Pathologists (CAP) have adopted this

minimalistic approach and recommend a panel of BRAF, NRAS,

and KIT mutations as a routine in melanoma patients (108). The

identification of mutations in tumor samples of melanoma patients

can even be customized in simple multiplex PCR assays for labs

with limited resources. Our group has tested tumor samples of a

small cohort of cutaneous melanoma patients using the Trusight

Oncology 500 panel. The analysis showed that all samples had a

high mutational burden, ranging from ~5-48 mutations per MB. All

samples were found to have one or more mutations in BRAF,

NRAS, and/or KIT that could be used in targeted therapy.

In conclusion, genomic tests on tumor samples can be run with

a small, cost-effective panel to identify the mutational burden and to

allow decisions regarding treatment with targeted therapy

and immunotherapy.
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7 Exploring affordable
immunohistochemistry markers that
may direct individual therapies

Traditionally, immunohistochemistry (IHC) is used as a tool to

help the pathologist confirm the cancer diagnosis. Thus the method

is routinely established in oncologic centers worldwide, and the

required equipment is available. While targeted therapies and

immune checkpoint inhibitors have demonstrated remarkable

efficacy, these drugs do not show uniform responses in all

patients. Immunohistochemistry has emerged as a promising tool

for assessing the expression of specific proteins within tumor

samples that may predict response. Among those proteins,

programmed death ligand 1 (PD-L1), T-cell markers, and mitotic

index markers are used the most.

Immunohistochemical analysis of PD-L1 expression in

melanoma samples has shown correlations with response to

immune checkpoint inhibitors such as Pembrolizumab

(Keytruda) and Nivolumab (Opdivo) (109). High PD-L1

expression is associated with improved response rates and

increased overall survival in some studies, suggesting PD-L1 as a

potential predictive biomarker (110).

Furthermore, tumor-infiltrating lymphocytes (TILs) within the

tumor microenvironment have been linked to better treatment

outcomes in cancer, especially melanoma (111). Objective

assessment of TILs has traditionally been performed by flow

cytometry to der ive T-ce l l l ineage (112) . However ,

immunohistochemistry can also quantify TIL subsets, including

CD8+ cytotoxic T cells and CD4+ helper T cells (113). In addition,

IHC staining of FoxP3 can help evaluate the presence and density of

Tregs within the tumor microenvironment (114).

Many studies tried to connect one or more other IHC stainings

with prognosis and response to therapy, such as mitotic index and

angiogenesis markers (115). Additionally, BAP1 (BRCA1-

associated protein 1) and MITF (microphthalmia-associated

transcription factor) expression were linked to poor prognosis

(116, 117).

Thus, using IHC of a limited set of markers can be a cost-

efficient tool to direct clinical treatment decisions.
8 Conclusions

Cancer is a common disease that affects many humans. New

technologies helped to understand the molecular basis of the different

malignancies and their interplay with the human immune system.

They led to new treatment strategies, some turning a previously fatal

diagnosis into a treatable and even curable condition. However, in

many cases, this comes with a price tag of several hundred thousand

dollars. Even in developed countries, this is a financial burden that is

hard to bear for society and unbearable for most individuals. Hence,

economic considerations are crucial for the general use of the new

drugs. The biggest cost drivers are, on the one hand, the high grade of

personalization, often involving the individual production of cellular

products, and on the other hand the successive administration of the
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different advanced medicinal products, due to the nescience, which

product is clinically effective. The first could be addressed by an

individualized combination of components from a warehouse of

products, thus allowing a more economic production. The use of

in-vivo-targeted substances like mRNA can help to reduce or avoid

the cost-intensive employment of living cells. The second could be

tackled by implementing new kinds of patient data, while narrowing

the information from established technologies to an informative set

of markers, which aid in treatment selection, thus avoiding the trial

and error principle. In addition, supportive therapies, which are per se

inexpensive, but increase the response rate to the advanced

treatments can decrease overall costs. Hopefully, the ideas and

proposals mentioned above will raise awareness of this dilemma

and contribute to developing cost-efficient and clinically effective

treatment strategies.
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