19 research outputs found

    Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard

    Get PDF
    Permafrost degradation in steep rock walls and associated slope destabilization have been studied increasingly in recent years. While most studies focus on mountainous and sub-Arctic regions, the occurring thermo-mechanical processes also play an important role in the high Arctic. A more precise understanding is required to assess the risk of natural hazards enhanced by permafrost warming in high-Arctic rock walls. This study presents one of the first comprehensive datasets of rock surface temperature measurements of steep rock walls in the high Arctic, comparing coastal and near-coastal settings. We applied the surface energy balance model CryoGrid 3 for evaluation, including adjusted radiative forcing to account for vertical rock walls. Our measurements comprise 4 years of rock surface temperature data from summer 2016 to summer 2020. Mean annual rock surface temperatures ranged from −0.6 in a coastal rock wall in 2017/18 to −4.3 ∘C in a near-coastal rock wall in 2019/20. Our measurements and model results indicate that rock surface temperatures at coastal cliffs are up to 1.5 ∘C higher than at near-coastal rock walls when the fjord is ice-free in winter, resulting from additional energy input due to higher air temperatures at the coast and radiative warming by relatively warm seawater. An ice layer on the fjord counteracts this effect, leading to similar rock surface temperatures to those in near-coastal settings. Our results include a simulated surface energy balance with shortwave radiation as the dominant energy source during spring and summer with net average seasonal values of up to 100 W m−2 and longwave radiation being the main energy loss with net seasonal averages between 16 and 39 W m−2. While sensible heat fluxes can both warm and cool the surface, latent heat fluxes are mostly insignificant. Simulations for future climate conditions result in a warming of rock surface temperatures and a deepening of active layer thickness for both coastal and near-coastal rock walls. Our field data present a unique dataset of rock surface temperatures in steep high-Arctic rock walls, while our model can contribute towards the understanding of factors influencing coastal and near-coastal settings and the associated surface energy balance

    A new approach to meteorological observations on remote polar glaciers using open-source internet of things technologies

    Get PDF
    Key regions of the world lack sufficient infrastructure to collect geophysical observations, often due to logistical challenges such as difficult accessibility and cost. With the advent of Internet-of-Things (IoT) technologies and low-cost electronics, it is possible today to build monitoring systems collecting spatially distributed, in-situ data with real-time connectivity to online servers for immediate and long-term usage at costs comparable to those of a single autonomous weather station. We present here a custom-built, modular system that collects quality data, and, that is, robust to adverse meteorological conditions and lack of energy. It integrates commercial and custom-built sensors connected to a node (main device) that manages power, data and radio communication. Data is sent to gateways and then to a server that parses, stores and quality controls the data. We deployed two networks in the vicinity of Ny-Ålesund in Svalbard, and operated from May 2021 to April 2022 to measure meteorological and glaciological variables. Our system collected reliable data and had sufficient power resources to survive 4–5 months of darkness during the polar night. Here, we present the design considerations and performance metrics, report our lessons learned from this challenging deployment, and suggest pathways for future improvements

    Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard

    Get PDF
    A large part of the ice flux within ice caps occurs through spatially limited fast-flowing units. Some of them permanently maintain fast flow, whereas others operate in an oscillatory mode, characterized by short-lived active phases followed by long quiescent phases. This surge-type behaviour results from intrinsic rather than external factors, thus complicating estimates of glacier response to climate change. Here we present numerical model results from Austfonna, an ice cap on Svalbard that comprises several surge-type basins. Previous studies have suggested a thermally controlled soft-bed surge mechanism for Svalbard. We systematically change the parameters that govern the nature of basal motion and thereby control the transition between permanent and oscillatory fast flow. Surge-type behaviour is realized by a relatively abrupt onset of basal sliding when basal temperatures approach the pressure-melting point and enhanced sliding of marine grounded ice. Irrespective of the dynamic regime, the absence of considerable volumes of temperate ice, both in the observed and simulated ice cap, indicates that fast flow is accomplished by basal motion over a temperate bed. Given an idealized present-day climate, the equilibrium ice-cap size varies significantly, depending on the chosen parameters

    Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard

    No full text
    By regulating the amount, the timing, and the location of meltwater supply to the glacier bed, supraglacial hydrology potentially exerts a major control on the evolution of the subglacial drainage system, which in turn modulates ice velocity. Yet the configuration of the supraglacial hydrological system has received only little attention in numerical models of subglacial hydrology so far. Here we apply the two-dimensional subglacial hydrology model GlaDS (Glacier Drainage System model) to a Svalbard glacier basin with the aim of investigating how the spatial distribution of meltwater recharge affects the characteristics of the basal drainage system. We design four experiments with various degrees of complexity in the way that meltwater is delivered to the subglacial drainage model. Our results show significant differences between experiments in the early summer transition from distributed to channelized drainage, with discrete recharge at moulins favouring channelization at higher elevations and driving overall lower water pressures. Otherwise, we find that water input configuration only poorly influences subglacial hydrology, which instead is controlled primarily by subglacial topography. All experiments fail to develop channels of sufficient efficiency to substantially reduce summertime water pressures, which we attribute to small surface gradients and short melt seasons. The findings of our study are potentially applicable to most Svalbard tidewater glaciers with similar topography and low meltwater recharge. The absence of efficient channelization implies that the dynamics of tidewater glaciers in the Svalbard archipelago may be sensitive to future long-term trends in meltwater supply

    Changes in winter warming events in the Nordic Arctic Region

    Get PDF
    In recent years extreme winter warming events have been reported in arctic areas. These events are characterized as extraordinarily warm weather episodes, occasionally combined with intense rainfall, causing ecological disturbance and challenges for arctic societies and infrastructure. Ground-ice formation due to winter rain or melting prevents ungulates from grazing, leads to vegetation browning, and impacts soil temperatures. The authors analyze changes in frequency and intensity of winter warming events in the Nordic arctic region—northern Norway, Sweden, and Finland, including the arctic islands Svalbard and Jan Mayen. This study identifies events in the longest available records of daily temperature and precipitation, as well as in future climate scenarios, and performs analyses of long-term trends for climate indices aimed to capture these individual events. Results show high frequencies of warm weather events during the 1920s–30s and the past 15 years (2000–14), causing weak positive trends over the past 90 years (1924–2014). In contrast, strong positive trends in occurrence and intensity for all climate indices are found for the past 50 years with, for example, increased rates for number of melt days of up to 9.2 days decade−1 for the arctic islands and 3–7 days decade−1 for the arctic mainland. Regional projections for the twenty-first century indicate a significant enhancement of the frequency and intensity of winter warming events. For northern Scandinavia, the simulations indicate a doubling in the number of warming events, compared to 1985–2014, while the projected frequencies for the arctic islands are up to 3 times higher

    Measured and modeled historical precipitation trends for Svalbard

    No full text
    Abstract Precipitation plays an important role in the Arctic hydrological cycle, affecting different areas like the surface energy budget and the mass balance of glaciers. Thus, accurate measurements of precipitation are crucial for physical process studies, but gauge measurements in the Arctic are sparse and subject to relocations and several gauge issues. From Svalbard, we analyze precipitation trends at six weather stations for the last 50–100 years by combining different observation series and adjusting for inhomogeneities. For the past 50 years, the measured annual precipitation has increased by 30%–45%. However, precipitation measurements in the cold and windy climate are strongly influenced by gauge undercatch. Correcting for undercatch reduces the trend values by 10% points, since the fraction of solid precipitation has decreased and undercatch is larger for solid precipitation. Thus, precipitation corrected for undercatch should be used to study “true” precipitation trends in the Arctic. Precipitation over Svalbard has been modeled by downscaling reanalysis data to a spatial resolution of 1 km. In general, the modeled annual precipitation is higher (13%–175%) than the measured values and mainly higher than the precipitation corrected for undercatch. Although the model resolves orographic effects on a regional scale, the downscaling is not able to reproduce local orographic enhancement for onshore winds, nor local effects of rain shadow. The downscaled dataset explains approximately 60% of the interannual precipitation variability. The model-based trends during 1979–2018 are positive, but weaker (~4% decade −1 ) than the observed (~8% decade −1 ) trends

    Spatio-temporal variability of snowmelt across Svalbard during the period 2000-08 derived from QuikSCAT/SeaWinds scatterometry

    No full text
    Significant changes in Arctic systems are underway, which are attributed to global warming. An important example is reduction in snow and ice coverage due to intensified melting in many regions. Active microwave instruments are used to detect surface melt and freeze-up based on the high sensitivity of radar backscatter to liquid water in the snow.We monitor two snowmelt parameters, the annual total of melt days and the date of summer melt onset across the archipelago of Svalbard using microwave backscatter measurements from the Ku-band scatterometer SeaWinds onboard the QuikSCAT satellite. Our analysis covers a nine-year time span from 2000 to 2008. Meteorological data from synoptic and automatic weather stations at several locations in Svalbard are used to investigate climatologic controls on pattern and timing of snowmelt. Svalbard temperature and precipitation regimes are highly variable throughout the year due to the location of the archipelago within a zone that is characterized by the convergence of atmospheric fronts from the Arctic Ocean, Nordic seas and the Barents Sea. Accordingly, our results show pronounced regional and interannual variability in snowmelt dynamics. However, we do find a trend towards earlier summer melt onset and an increasing number of melt days per year over the nine-year period of study. Our findings agree with climate-model predictions that project increasingly warmer and wetter conditions in the Arctic. Keywords: Svalbard; radar remote sensing; snowmelt detection; climate variability; scatterometry (Published: 17 February 2011) Citation: Polar Research 2011, 30, 5963, doi: 10.3402/polar.v30i0.596
    corecore