276 research outputs found
First direct measurement of the total cross section of 12C(alpha,gamma)16O
The total cross section of 12C(alpha,gamma)16O was measured for the first
time by a direct and ungated detection of the 16O recoils. This measurement in
inverse kinematics using the recoil mass separator ERNA in combination with a
windowless He gas target allowed to collect data with high precision in the
energy range E=1.9 to 4.9 MeV. The data represent new information for the
determination of the astrophysical S(E) factor.Comment: 5 pages, 3 figures, 1 table, accepted for publication Eur.Phys.J. A
(Online first available
Scope for Credit Risk Diversification
This paper considers a simple model of credit risk and derives the limit distribution of losses under different assumptions regarding the structure of systematic risk and the nature of exposure or firm heterogeneity. We derive fat-tailed correlated loss distributions arising from Gaussian risk factors and explore the potential for risk diversification. Where possible the results are generalised to non-Gaussian distributions. The theoretical results indicate that if the firm parameters are heterogeneous but come from a common distribution, for sufficiently large portfolios there is no scope for further risk reduction through active portfolio management. However, if the firm parameters come from different distributions, then further risk reduction is possible by changing the portfolio weights. In either case, neglecting parameter heterogeneity can lead to underestimation of expected losses. But, once expected losses are controlled for, neglecting parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected loss or value-at-risk
The arabidopsis DNA polymerase Ξ΄ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering
DNA replication is a key process in living organisms. DNA polymerase Ξ± (PolΞ±) initiates strand synthesis, which is performed by PolΞ΅ and PolΞ΄ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of PolΞ± and PolΞ΅ were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the PolΞ΄ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28Β°C, looked normal at 18Β°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24Β°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase Ξ΄ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.Fil: Iglesias, Francisco Manuel. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; ArgentinaFil: Bruera, Natalia Alejandra. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; ArgentinaFil: Marino, Cristina Ester. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; ArgentinaFil: Lorenzi, HernΓ‘n. J. Craig Venter Institute; Estados UnidosFil: Mateos, Julieta Lisa. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; Argentina. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Coupland, George. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. FundaciΓ³n Instituto Leloir; Argentina. Universidad de Buenos Aires. Departamento de Ciencias Exactas; Argentin
Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA
An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization
Crystal Structures of the ATPase Domains of Four Human Hsp70 Isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78
The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1
Role of Hsp70 ATPase Domain Intrinsic Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs
Catalysis of ADP-ATP exchange by nucleotide exchange factors (NEFs) is central to the activity of Hsp70 molecular chaperones. Yet, the mechanism of interaction of this family of chaperones with NEFs is not well understood in the context of the sequence evolution and structural dynamics of Hsp70 ATPase domains. We studied the interactions of Hsp70 ATPase domains with four different NEFs on the basis of the evolutionary trace and co-evolution of the ATPase domain sequence, combined with elastic network modeling of the collective dynamics of the complexes. Our study reveals a subtle balance between the intrinsic (to the ATPase domain) and specific (to interactions with NEFs) mechanisms shared by the four complexes. Two classes of key residues are distinguished in the Hsp70 ATPase domain: (i) highly conserved residues, involved in nucleotide binding, which mediate, via a global hinge-bending, the ATPase domain opening irrespective of NEF binding, and (ii) not-conserved but co-evolved and highly mobile residues, engaged in specific interactions with NEFs (e.g., N57, R258, R262, E283, D285). The observed interplay between these respective intrinsic (pre-existing, structure-encoded) and specific (co-evolved, sequence-dependent) interactions provides us with insights into the allosteric dynamics and functional evolution of the modular Hsp70 ATPase domain
The trans-ancestral genomic architecture of glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242βloci (99 novel; Pβ<β5βΓβ10β8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
- β¦