1,398 research outputs found

    Promised Land, Crusader State: The American Encounter with the World since 1776

    Get PDF

    Flashing LEDs for microalgal production

    Get PDF
    Flashing lights are next-generation tools to mitigate light attenuation and increase the photosynthetic efficiency of microalgal cultivation systems illuminated by light-emitting diodes (LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the linear electron transfer chain, energy dissipation, and storage mechanisms of a phototroph. In particular, extremely short and intense light flashes potentially mitigate light attenuation in photobioreactors without impairing photosynthesis. Intelligently controlling flashing light units and selecting electronic components can maximize light emission and energy efficiency. We discuss the biological, physical, and technical properties of flashing lights for algal production. We combine recent findings about photosynthetic pathways, self-shading in photobioreactors, and developments in solid-state technology towards the biotechnological application of LEDs to microalgal production.Foundation for Science and Technology (FCT, Portugal) [CCMAR/Multi/04326/2013]Nord UniversityNordland County Government (project Bioteknologi en framtidsrettet naering)INTERREG V-A Espana-Portugal project [0055 ALGARED + 5E]Portuguese Foundation for Science and Technology [SFRH/BD/105541/2014, SFRH/BD/115325/2016]info:eu-repo/semantics/publishedVersio

    A Randomized Depression Prevention Trial Comparing Interpersonal Psychotherapy—Adolescent Skills Training To Group Counseling In Schools

    Get PDF
    Given the rise in depression disorders in adolescence, it is important to develop and study depression prevention programs for this age group. The current study examined the efficacy of Interpersonal Psychotherapy-Adolescent Skills Training (IPT-AST), a group prevention program for adolescent depression, in comparison to group programs that are typically delivered in school settings. In this indicated prevention trial, 186 adolescents with elevated depression symptoms were randomized to receive IPT-AST delivered by research staff or group counseling (GC) delivered by school counselors. Hierarchical linear modeling examined differences in rates of change in depressive symptoms and overall functioning from baseline to the 6-month follow-up assessment. Cox regression compared rates of depression diagnoses. Adolescents in IPT-AST showed significantly greater improvements in self-reported depressive symptoms and evaluator-rated overall functioning than GC adolescents from baseline to the 6-month follow-up. However, there were no significant differences between the two conditions in onset of depression diagnoses. Although both intervention conditions demonstrated significant improvements in depressive symptoms and overall functioning, results indicate that IPT-AST has modest benefits over groups run by school counselors which were matched on frequency and duration of sessions. In particular, IPT-AST outperformed GC in reduction of depressive symptoms and improvements in overall functioning. These findings point to the clinical utility of this depression prevention program, at least in the short-term. Additional follow-up is needed to determine the long-term effects of IPT-AST, relative to GC, particularly in preventing depression onset

    OPTIMIZATION OF DISCUS FLIGHT

    Get PDF
    We use a 3-D model for men’s and women’s discus flight including initial discus flight path angle β0, angle of attack α0, pitch attitude δ0 as well as release speed v0 and initial spin rate p0. We study in detail optimal release conditions depending on a constant wind velocity of v0 =5 m/s blowing from different directions γ=0°, 10° up to 350°. Here γ =0°, 180°, 90°, and 270° correspond to tail wind, head wind, wind from the left, and wind from the right, respectively. The optimal wind for men is head wind from the right (γ= 220°). In this case optimal men’s strategy at v0=25 m/s is β0 = 33°, α0= 23°, δ0= 30° with a range r=74.80 m. Optimal wind for women is wind exactly from the right (γ= 270°). The optimal women’s strategy at v0=24 m/s is β0 = 41°, α0= 32°, δ0 = 30° with a range r=61.26 m. In all cases we assume an initial spin rate of p0=50 rad/s. At the moment of release, the angle of attack α0 of the discus symmetry plane should always be less than the flight path angle β0. Also, we can show that a faster-spinning discus imparts greater gyroscopic stability and therefore achieves a better throw. We used evolutionary algorithms to perform the optimization

    The creation and early implementation of a high speed fiber optic network for a university health sciences center

    Get PDF
    pre-printIn late 1989 the University of Missouri Health Sciences Center began the process of creating an extensive fiber optic network throughout its facilities, with the intent to provide networked computer access to anyone in the Center desiring such access, regardless of geographic location or organizational affiliation. A committee representing all disciplines within the Center produced and, in conjunction with independent consultants, approved a comprehensive design for the network. Installation of network backbone components commenced in the second half of 1990 and was completed in early 1991. As the network entered its initial phases of operation, the first realities of this important new resource began to manifest themselves as enhanced functional capacity in the Health Sciences Center. This paper describes the development of the network, with emphasis on its design criteria, installation, early operation, and management. Also included are discussions on its organizational impact and its evolving significance as a medical community resource

    A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense

    Get PDF
    Cell division needs to be tightly regulated and closely coordinated with other cellular processes to ensure the generation of fully viable offspring. Here, we investigate division site placement by the cell division regulator MipZ in the alphaproteobacterium Magnetospirillum gryphiswaldense, a species that forms linear chains of magnetosomes to navigate within the geomagnetic field. We show that M. gryphiswaldense contains two MipZ homologs, termed MipZ1 and MipZ2. MipZ2 localizes to the division site, but its absence does not cause any obvious phenotype. MipZ1, by contrast, forms a dynamic bipolar gradient, and its deletion or overproduction cause cell filamentation, suggesting an important role in cell division. The monomeric form of MipZ1 interacts with the chromosome partitioning protein ParB, whereas its ATP-dependent dimeric form shows non-specific DNA-binding activity. Notably, both the dimeric and, to a lesser extent, the monomeric form inhibit FtsZ polymerization in vitro. MipZ1 thus represents a canonical gradient-forming MipZ homolog that critically contributes to the spatiotemporal control of FtsZ ring formation. Collectively, our findings add to the view that the regulatory role of MipZ proteins in cell division is conserved among many alphaproteobacteria. However, their number and biochemical properties may have adapted to the specific needs of the host organism

    Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae

    Get PDF
    Microalgae are important sources of triacylglycerols (TAGs) and high-value compounds such as carotenoids and long-chain polyunsaturated fatty acids (LC-PUFAs). TAGs are feedstocks for biofuels or edible oils; carotenoids are used as pigments in the food and feed industries; and LC-PUFAs are beneficial for human health, being also key to the correct development of fish in aquaculture. Current trends in microalgal biotechnology propose the combined production of biofuels with high-value compounds to turn large-scale production of microalgal biomass into an economically feasible venture. As TAGs, carotenoids and LC-PUFAs are lipophilic biomolecules, they not only share biosynthetic precursors and storage sinks, but also their regulation often depends on common environmental stimuli. In general, stressful conditions favor carotenoid and TAGs biosynthesis, whereas the highest accumulation of LC-PUFAs is usually obtained under conditions promoting growth. However, there are known exceptions to these general rules, as a few species are able to accumulate LC-PUFAs under low light, low temperature or long-term stress conditions. Thus, future research on how microalgae sense, transduce and respond to environmental stress will be crucial to understand how the biosynthesis and storage of these lipophilic molecules are regulated. The use of high-throughput methods (e.g. fluorescent activated cell sorting) will provide an excellent opportunity to isolate triple-producers, i.e. microalgae able to accumulate high levels of LC-PUFAs, carotenoids and TAGs simultaneously. Comparative transcriptomics between wild type and tripleproducers could then be used to identify key gene products involved in the regulation of these biomolecules even in microalgal species not amenable to reverse genetics. This combined approach could be a major step towards a better understanding of the microalgal metabolism under different stress conditions. Moreover, the generation of triple-producers would be essential to raise the biomass value in a biorefinery setting and contribute to meet the world's rising demand for food, feed and energy.Foundation for Science and Technology (Portugal) through research programme [CCMAR/Multi/04326/2013]doctoral research grants [SFRH/BD/105541/2014, SFRH/BD/115325/2016]Spanish Ministry of Economy and Competitiveness [AGL2016-74866-C3-02]CEIMARNord University and Nordland County Government project Bioteknologi-en framtidsrettet noeringinfo:eu-repo/semantics/publishedVersio

    Encounter complexes and dimensionality reduction in protein-protein association

    Get PDF
    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition
    • 

    corecore