851 research outputs found

    Design of a Microstructured System for Homogenization of Dairy Products with High Fat Content

    Get PDF
    High pressure homogenization of dairy products is today state of the art but limited by the fat content (max 17 vol.-%). This article describes the development of a novel simultaneous homogenization and mixing (SHM) valve which allows homogenization of dairy products with a fat content of up to 42 vol.-%. The challenging task of homogenizing dairy products with high fat content is to stabilize disrupted fat droplets especially against extensive aggregation. Aggregation and coalescence rates could be significantly reduced by a new microstructured valve allowing the emulsifier-containing phase to be injected directly into the zone of droplet disruption

    Pore network model of primary freeze drying

    Full text link
    [EN] he pore scale progression of the sublimation front during primary freeze drying depends on the local vapor transport and the local heat transfer as well. If the pore space is size distributed, vapor and heat transfer may spatially vary. Beyond that, the pore size distribution can substantially affect the physics of the transport mechanisms if they occur in a transitional regime. Exemplarily, if the critical mean free path is locally exceeded, the vapor transport regime passes from viscous flow to Knudsen diffusion. At the same time, the heat transfer is affected by the local ratio of pore space to the solid skeleton. The impact of the pore size distribution on the transitional vapor and heat transfer can be studied by pore scale models such as the pore network model. As a first approach, we present a pore network model with vapor transport in the transitional regime between Knudsen diffusion and viscous flow at constant temperature in the dry region. We demonstrate the impact of pore size distribution, temperature and pressure on the vapor transport regimes. Then we study on the example of a 2D square lattice, how the presence of micro and macro pores affects the macroscopic progression of the sublimation front.Vorhauer, N.; Först, P.; Schuchmann, H.; Tsotsas, E. (2018). Pore network model of primary freeze drying. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 221-228. https://doi.org/10.4995/IDS2018.2018.7284OCS22122

    PFG-NMR on Double Emulsions: A Detailed Look into Molecular Processes

    Get PDF

    Assessment of modulated hot wire method for thermophysical characterization of fluid and solid matrices charged with (nano)particle inclusions

    Get PDF
    Recently we reported on simultaneous thermal conductivity k and thermal diffusivity a measurement of liquids and in particular of nanofluids in a configuration using an ac excited hot wire combined with lock-in detection of the third harmonic (3ω method) [1]. The conductive wire is used as both heater and sensor. The requirements for the asymptotic validity of the line heat source model are fulfilled at low modulation frequencies below a few Hz. The study of the relative sensitivity of signal amplitude and phase to changes in k and a indicates that there is an optimum frequency range for accurate and stable results. We extend by up to two decades the feasible frequency range for 3ω measurements by considering various more elaborate models for the heat transfer between the wire and the fluid. Finally we show that the same ac hot wire method can be applied to soft solid, composite materials. We measured the k enhancement of a poly(ethylene vinyl acetate) EVA polymer matrix charged with various fractions of graphite

    Elliptic flow of charged pions, protons and strange particles emitted in Pb+Au collisions at top SPS energy

    Full text link
    Differential elliptic flow spectra v2(pT) of \pi-, K0short, p, \Lambda have been measured at \sqrt(s NN)= 17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb+Au collisions (10% of \sigma(geo)). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for \Lambda) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow v2(pT) is derived as a constituent, besides \pi+ and K+, of the elliptic flow of positive pion candidates. The retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 were adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming \pi+ and \pi- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series \pi- - K0short - p - \Lambda, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf= 160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous dynamics studies which focus on late hadronic stages.Comment: 38 pages, 27 figures, 2 tables. Abstract and parts of introduction made more comprehensible; corrected typos; acknowledgement added. To appear in Nucl.Phys.

    Particle Production at Large Transverse Momentum with ALICE

    Full text link
    We present transverse momentum distributions of inclusive charged particles and identified hadrons in pppp and Pb--Pb collisions at \rs= 2.76 TeV, measured by ALICE at the LHC. The Pb--Pb data are presented in intervals of collision centrality and cover transverse momenta up to 50 GeV/cc. Nuclear medium effects are studied in terms of the nuclear modification factor \raa. The results indicate a strong suppression of high-pTp_T particles in Pb--Pb collisions, consistent with a large energy loss of hard-scattered partons in the hot, dense and long-lived medium created at the LHC. We compare the preliminary results for inclusive charged particles to previous results from RHIC and calculations from energy loss models. Furthermore, we compare the nuclear modification factors of inclusive charged particles to those of identified π0\pi^0, π±\pi^{\pm}, Ks0^0_s, and Λ\Lambda.Comment: Talk given at Quark Matter 2011 conferenc

    Azimuthal dependence of pion source radii in Pb+Au collisions at 158 A GeV

    Get PDF
    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.Comment: 5 pages, 2 figure
    corecore