321 research outputs found

    The ribosomal ribonucleic acid of Agrobacterium tumefaciens

    Full text link

    Particle number conservation in quantum many-body simulations with matrix product operators

    Full text link
    Incorporating conservation laws explicitly into matrix product states (MPS) has proven to make numerical simulations of quantum many-body systems much less resources consuming. We will discuss here, to what extent this concept can be used in simulation where the dynamically evolving entities are matrix product operators (MPO). Quite counter-intuitively the expectation of gaining in speed by sacrificing information about all but a single symmetry sector is not in all cases fulfilled. It turns out that in this case often the entanglement imposed by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure

    DPP9 is a novel component of the N-end rule pathway targeting the tyrosine kinase Syk.

    Get PDF
    The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices

    Full text link
    We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Bipartite entanglement in systems of identical particles: the partial transposition criterion

    Full text link
    We study bipartite entanglement in systems of N identical bosons distributed in M different modes. For such systems, a definition of separability not related to any a priori Hilbert space tensor product structure is needed and can be given in terms of commuting subalgebras of observables. Using this generalized notion of separability, we classify the states for which partial transposition turns out to be a necessary and sufficient condition for entanglement detection.Comment: LaTeX, 22 page
    corecore