327 research outputs found

    Nano-structures at martensite macrotwin interfaces in Ni65Al35Ni_{65}Al_{35}

    Get PDF
    The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35Ni_{65}Al_{35} material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular \{110\} austenite planes, enclose a final angle larger or smaller than 90∘90^{\circ}. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwin variants are observed. The most reproducible deformations occur in a region of approximately 5-10nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses

    Lattice deformations at martensite-martensite interfaces in Ni-Al

    Get PDF
    The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35Ni_{65}Al_{35} material are investigated using high resolution transmission electron microscopy (HRTEM). The observed structures are interpreted in view of possible formation mechanisms of these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular \{110\} austenite planes, enclose a final angle larger or smaller than 90∘90^{\circ}, measured over the boundary. Two different configurations, one with crossing microtwins and the other with ending microtwins producing a step configuration are described. The latter is related with the existence of microtwin sequences with changing variant widths. Although both features appear irrespective of the material’s preparation technique, rapid solidification seems to prefer the step configuration. Depending on the actual case, tapering, bending and tip splitting of the small microtwin variants is observed. Sever lattice deformations and reorientations occur in a region of 5 – 10 nm around the interface while sequences of single plane ledges gradually bending the microtwins are found up to 50 nm away form the interface. These structures and deformations are interpreted in view of the need to accommodate any remaining stresses

    The analysis of macrotwins in NiAl martensite

    Get PDF
    We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35Ni_{65}Al_{35}

    Effect of amorphous-crystalline interfaces on the martensitic transformation in Ti 50 Ni 25 Cu 25

    Get PDF
    Abstract A partially crystallized amorphous Ti 50 Ni 25 Cu 25 melt-spun ribbon showing spherical particles in martensite has been investigated. Microstructural observations support the hindering of the martensitic transformation as well as the production of additional autoaccommodated structures nearby the interface compared with the ones used inwards

    The correlations with identity companion automorphism, of finite Desarguesian planes

    Get PDF
    AbstractAs a first step towards the general classification of correlations of finite Desarguesian planes, we present, up to isomorphism, all the correlations with identity companion automorphism which are not polarities, of such planes

    Anomalous phonon behavior in the high temperature shape memory alloy: TiPd:Cr

    Get PDF
    Ti50 Pd50-xCrx is a high temperature shape memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation a premartensitic phase is present with an incommensurate modulated cubic lattice with wave vector of q0=(0.22, 0.22, 0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q-dependence of the [110]-TA2 transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q0. The results are compared with first principles calculation of the phonon structure.Comment: 26 pages, 11 figure

    Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars

    Get PDF
    Transmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures

    Three-Dimensional Elastic Compatibility: Twinning in Martensites

    Full text link
    We show how the St.Venant compatibility relations for strain in three dimensions lead to twinning for the cubic to tetragonal transition in martensitic materials within a Ginzburg-Landau model in terms of the six components of the symmetric strain tensor. The compatibility constraints generate an anisotropic long-range interaction in the order parameter (deviatoric strain) components. In contrast to two dimensions, the free energy is characterized by a "landscape" of competing metastable states. We find a variety of textures, which result from the elastic frustration due to the effects of compatibility. Our results are also applicable to structural phase transitions in improper ferroelastics such as ferroelectrics and magnetoelastics, where strain acts as a secondary order parameter
    • 

    corecore