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Abstract

As a first step towards the general classification of correlations of finite Desarguesian
planes, we present, up to isomorphism, all the correlations with identity companion auto-
morphism which are not polarities, of such planes. © 2000 Elsevier Science Inc. All rights
reserved.
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1. Introduction

We shall denote the points of a plane by boldface lowercase Latin letters. They
will be viewed as column vectors:

()

If the pointcis incident with the linel, we writec € L.

A correlationg of a projective plane is a one-to-one mapping of its points onto
its lines and its lines onto its points, such that L if and only if L? e ¢?. It can be
represented as follows [5, p. 47]:

a’ =(x: xTaa? =0}, {x: x'd=0=A"Td?. 1)
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Here, A is a nonsingular % 3 matrix over the underlying fieldd T = (A~1)T,
and¢, an automorphism of the field.

In agreement with [2], we cafh the companion automorphism gf

The simplest correlations are polarities and they have long been classified.

The present article should be viewed as the first step towards the general clas-
sification of correlations of finite Desarguesian planes. This author has undertaken
to classify these correlations, and as of this writing, the correlations of planes of
odd nonsquare order have been almost completely determined, up to isomorphism
(in the sense of Definition 1 below). It is not a simple problem, and the results will
be presented, not surprisingly, in a long article: classification papers are notoriously
lengthy.

As one begins to classify correlations, it soon becomes apparent that a great
deal hinges upon the order of the plane being odd or even, and also a square or a
nonsquare. Thus, there are actually four different classifications, and, as mentioned
above, one of them is nearing completion at this time.

Besides, and this brings us to the article at hand, one also notices that the meth-
ods employed in classifying the correlations with companion automorpéism
(¢™), of planes of ordeg”, do not work ifm = 0. Therefore the problem must be
approached differently ip = (1).

Not only is the approach different (and considerably easier), but so are the results.
For example, if the automorphism is the identity, and three absolute points of the
given correlation are collinear, theril the points on that line are absolute. This
never happens with other companion automorphisms.

It is also evident that i) = (1), it does not matter whether the order of the plane
is a square or not, and not much whether it is odd or even. This is by no means the
case for other automorphisms. One thus naturally arrives at the decision to discuss
these correlations in a separate, introductory paper.

For ease of reference, definitions, propositions, etc., will be numbered sequen-
tially.

We will denote the correlation defined by the matrix with companion auto-
morphismg = (1), by (A). Thus (1) becomes

aW ={x:x"Aa=0}, {x:x'd=0" =Aa"Td. (2)

The collineation(A)? shall be referred to as the collineation induced by the
correlation ). The image of the poird under the collineationA)? is

a®’ = (x:xTAa=0)4 = A~ TAa, 3)

A pointa is an absolute point of the correlatioa)if a € a?, i.e. ifa’ Aa = 0.
As in [6], by the absolute set of a correlation we shall mean the set of its absolute
points. The equation of the absolute set of the correlatigrgx" Ax = 0.

As we are not interested in polarities, our correlations will never be defined by
symmetric matrices.
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Definition 1. Two correlations 4), (B) are equivalent (or isomorphic) if there
exists a collineatiory such thatx € a8 <= x” ¢ a”®, or, equivalently, such
thata®” = a¥(®) for all the pointsa.

If the correlations 4), (B) are equivalent, we will writéA) ~ (B).

If A= (q;) is a matrix over a field, and, an automorphism of the field, we
denoteA” = (af).

Following [1f, we introduce:

Definition 2.  Two nonsingular 3x 3 matricesA, B, over a finite field are congruent
(written A ~ B) if there exist a matrixC, an automorphism of the field, and a
such thatd® = ACTBC.

Proposition 3. (A) ~ (B) < A ~ B.

Proof. AssumeA) ~ (B), wherex” = Cx“ for some matrixC and automorphism
. By assumptionx € a¥) <= x” ¢ a’® for all pointsa.

Hencex"Aa=0 < (Cx¥)TBCa = 0, orx' Ra = 0, whererR = (CTBC)® .
Thus:

x"Aa=0 <= x"Ra= 0 forall pointsa.

Upon letting

=(3)-6)- () ¢)

it follows thatA and R must be scalar multiples of each other, so thfat= ACT BC.
Conversely, led® = ACTBC. Definey as beforex” = Cx*.
By (2) we havea” ®) = {x : x" Ba” = 0}. Hencex” € a’®) means’TBa’ = 0.
But the last equation is equivalenttbAa = 0:

1
x'TBa’ = (Cx*)"B(Ca¥) = x*TcTBCa* = X(xTAa)“. O

At this point we shall state the main classification results, in the form of two
theorems, although the complete proofs will only emerge gradually in the sections
that follow.

Theorem 4. Let g be an odd prime powerand w, a primitive root of GKg).
Then up to isomorphismthe correlations defined by the following matrices are
all the correlations of P@, ¢) with identity companion automorphism which are
not polarities
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2 0 0 1

2) , M= (O 1 1) ,

1 1 00

0 1 2 0

0) , P= (O 1 0) ,

w 0 0 1

1 p O 1 p O
Qp=<0 1 O), p#+0, £2, Rp=<0 w 0), p # 0.
0 0 1 0O 0 1

No two matrices on this list are congruentith the following exceptions

Two matricesQ,, O, are congruent if and only ip’ = £p* for some auto-
morphisnmu of the field

Two matricesk,,, R, are congruent if and only i’ = +p%w~3@=D for some
automorphisna of the field

~
I
S
(o NeN
oOrRrNOEN

Theorem 5. Letq be a power oR, andw, a primitive root of GKg). Then up to
isomorphismthe correlations defined by the following matrices are all the correla-
tions of PG2, ¢) with identity companion automorphism which are not polarities

1 p O 1 v O
Sp=<0 1 0), p #+ 0, V:(O 1 v),
0 0 1 0 0 1

wherev is a fixed element of @g) for which the trinomialx2 + vx + 1 is not
factorable

1 w+% 0
W=1|0 1 w—i—%
0 0 1

No two matrices on this list are congruentith the following exceptian
Two matricesS,, S,/, are congruentifand only ’ = p* for some automorphism
«a of the field

The remainder of the article is devoted to proving these two theorems.
2. Preliminary results
The first proposition follows readily from Proposition 3.

Proposition 6. If (A) ~ (B), the collineationy in Definition1 maps the absolute
set of the correlatioriA) onto the absolute set of the correlatioB).

Proposition 7. The absolute set of the correlatign) is invariant under the induced
collineation(A)2.
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Proof. Letabe an absolute point gfd) : a’ Aa = 0.
Thena?, as given by (3), is an absolute point )¢

(A TAa)"AA TAa) =a"ATA 1 AA TAa=a"4a=0. O

Proposition 8. Let (A) ~ (B) and denote the corresponding collineation jpylf
a, b are two points such that” = b, thena®? = h(B?,

Proof. We haveb = a = Ca®, and by Proposition 34 = ACT BC. By virtue of
(3), we get

a®h = c(a T Aa)". (4)

On the other handB = A~1C~TA*C~, whenceB~T = ACcA~TeCT.
Now, by (3) again

b®? = g Teb = xca~TecTy( "L Ta%c~hca® = cA~ T A%,
Comparing this expression fof®)’ with (4) establishes the claim. [

Corollary 9. The collineationy maps the fixed points of the collineatioh)? onto
those of( B)2.

Proof. If a®? = aandb = a”, we haveb®’ = a®? —ar =h. 0O

A few algebraic results are also needed. The next lemma is a simple consequence
of [3, Theorem 67].

Lemma 10. For ¢ odd the field GRg) contains according ag; = 3 or 1 mod 4
1(g — 3) or 1(g — 5) nonzero squares for which S + 1is a nonzero square
1(q¢ +1) or i(g — 1) squaressS for which S + 1is a nonsquare
1(q — 3) or X(g — 1) nonsquaresV for whichN + 1is a nonzero square
1(q —3) or (¢ — 1) nonsquaresy for whichN + 1is a nonsquare.

We will let SQ NS stand for the set of squares and nonsquares, respectively, in
GF(g), ¢ odd.

Proposition 11. Let g be an odd prime powerand u # +2, a fixed element of
GF(q). Then as x ranges through GFy), the trinomial x? + ux + 1 takes on
1(¢ + 1) distinct valuesof which
1(¢ +1) are squares and(q + 1) are nonsquares if ¢ = 3 mod 4
(g + 3) are squares and (g — 1) are nonsquares
if g =1 mod 4andu® — 4 € SQ;
1(g — 1) are squares ang(g + 3) are nonsquares
if g = 1 mod 4andu® — 4 € NS.
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Proof. Leta e GF(q). The trinomialx? + ux + 1 will take on the value if and
only if the equationc? + ux + 1 — a = 0 has roots, i.e. if and only if +4a = s €
SQ, wherev = u? — 4 # 0. In other words, we have the condition
SR .} )
v v

Let first g =3 mod 4 andv € SQ. Then, if s # 0, we have—s/v € NS Also,
—4/v € NS

If s =0,a=—-v/4€NS

As s ranges througtsQ\ {0, v}, —s/v ranges througiNS\ {—1}. Hence, by
Lemma 10, we get (¢ — 3) nonvanishing square values and the same number of
nonsquare values for-4a/v, which produces(q — 3) nonsquare values and
1(¢ — 3) nonzero square values far Lemma 10 does not consider the nonsquare
N = —1, as it assumed’ + 1 #+ 0. That is why we have not allowed= v, which
would implya = 0 € SQ So there is one more square valuedor

Thereforea takes onl (g + 1) square values and the same number of nonsquare
values, as claimed in the statement of the proposition.

Let nowg = 3 mod 4, and € NS Then—s/v € SQ Also, —4/v € SQ

If s =0,a=-v/4€SQ

As s ranges througtsQ\ {0}, so does—s/v. By Lemma 10 again, there are
1(¢ — 3) nonzero values of for which —4a/v € SQ(i.e. ac SQ, andi(q + 1)
values ofs for which —4a /v € NS(i.e.a € NS).

We have thus obtained the same numbers as in thevcaseQ

Assume nexyy = 1 mod 4 and € SQ Then—s/v € SQ Also, —4/v € SQ

If s =0,a=-v/4€SQ

As sranges througBQ\ {0, v}, —s/v ranges througsQ\ {0, —1}. Hence there
arel(g — 5) nonvanishing square values ah@ — 1) nonsquare values forda /v,
and fora as well.

We have not allowed = v, because thers/v + 1 = 0 and Lemma 10 assumes
S+1+#0.

If s =v, we geta =0 € SQfrom (5), as earlier. Thus we have gotté@y — 5)
+ 2= 1(g + 3) square values, anf{lg — 1) nonsquare values far.

Finally, letg = 1 mod 4 and) € NS Then—s/v € NS Also, —4/v € NS

If s =0,a=—-v/4eNS

As sranges througBQ\{0}, —s /v ranges througNS There are (41 values of
s forwhich—4a/v € SQ(i.e.a € NS and the same number of valuessdbr which
a € SQ

Hence we end up Wit% (g — 1) square values an%i(q + 3) nonsquare values of
a. O

Proposition 12. Consider the distinct trinomialsx? + sx + 1, x2 + vx + 1,
x2+ (sv/(s + v))x + 1, sv # 0, over GRg), g even.
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If the first two trinomials have zerp®sr if neither of them doeghen the third
trinomial has zeros. Otherwis¢he third trinomial possesses no zeros.

Proof. If the zeros of the first two trinomials artg 1/a, andb, 1/b, then(ab +
1)/(a + b) and its reciprocal are zeros of the third: we havwe 1/a = s andb +
1/b = v by assumption, and then one readily verifies thak + 1)/(a + b)+
(a+b)/(ab+ 1) =sv/(s + v).

Assume now that the first trinomial, say, and the third, have zeros, but the second
one does not, contrary to the assertion in the last sentence of this proposition.

Let u = sv/(s 4+ v). Then, by what has been shown above, the trinomfal
(su/(s + u))x + 1 possesses zeros. But/(s + u) = v, and this contradiction settles
the matter.

Finally, assume that the first two trinomials have no zeros. We need to show that
in this case the last one does have zeros.

Lettings’ = 1/s andv’ = 1/v, we can reword this claim as follows:

If the trinomialss’x2 + x + s’ andv'x2 + x + v’ do not have zeros, thed’ +
v)x2+ x + s’ + v/ has zeros.

Partition the given field (with zero removed) into two subsets T, U, such that
a€T < ax?+ x+a has zeros, anl e U <= bx?+ x + b does not have
Zeros.

We have to demonstrate thétv' e U = s’ +v e T.

Since the zeros come in pairs, and 0,1 cannot be zeros, it followdThat
3q — 1, thereforéU| = 3q. We have seen earlier in the proof that 7, s’ € U =
a+ s’ € U.Hence, ifs’ € U is fixed, the%q elements’, s’ + a, a ranging through
T, make up thd/ subset. In other words, to eache U, v’ + s/, there corresponds
ana € T suchthat' =s" 4+ a,whences’ +v' =aeT. O

We are now prepared to prove the main results that have been set forth in the
Introduction. The plan of the work is as follows: in the next section we shall examine
the configurations of the absolute sets of the correlations defined by the matrices in
Theorem 4, and we will also determine the points left invariant by the induced collin-
eations. This discussion will establish that the respective matrices are not congruent,
with the possible exception that some of the matrices of t9peor R, might be
congruent.

Then, in Section 4 we show that the list in Theorem 4 is exhaustive, in the sense
that every correlation of a Desarguesian plane of odd order, with identity companion
automorphism (polarities excluded) is equivalent to a correlation defined by a matrix
listed there. Thus Theorem 4 represents the complete classification for planes of odd
order.

Sections 5, 6 are devoted to the same task for the situation in whigh power
of 2, thereby supplying the proof of Theorem 5.
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3. Inequivalent correlations of planes of odd order
The next proposition is valid regardless of the parity;of

Proposition 13. Let
1 ¢+ 0
A=|10 u 0}, tuv=#0,
0 0 v
define the correlationiA) of PG(2, ¢), with identity companion automorphism.
Then the induced collineatiai )2 leaves invariant the nonabsolute po(n(li) of
(A), and also the absolute points @4) on the linez = 0, if any, and none other.

Proof. We have

whence, by (3)

c )2 c c+td
-T : 24
d =A"Ald | = —tl—f —i—d—’T

1 1 1

If the point(%) is to be fixed, we must have

c ? Ac
1 A

whencel = 1 and thenl = ¢ = 0. Thus(§> is the only fixed point with; # O.

The points(é) , (Z) are not left invariant byA)?, obviously, because+ 0 by
assumption.
Assume now that the poir(tg), c + 0, is fixed:

c c+t Ac

-T _ 2
ATAlL )= E+1-Z | =] 2
0 0 0

This is readily seen to lead & + rc 4+ u = 0, which shows tha(%) must be an
absolute point of the correlatiq).

Conversely, it is a simple check that an absolute pégn) of (A) is fixed by the
induced collineation. [J
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Proposition 14. The absolute set of the correlatigh) consists of the points on the
linex +y+z=0.
The induced collineation is a homology with axis+ y +z = 0 and center

(—%) the latter being a nonabsolute point @f).

Proof. The absolute set of the correlatioh) is the set of points(';) satisfying
the equation

1 2 2\ /x
(xyZ)(O 1 2) (y):O.
0 0 1/ \z

This reducesta + y +z = 0. Then

1 2 2
L7L = (—2 -3 —2).
2 2 1
The eigenvalues of this matrix a#iel, and the eigenvectors are

(= (%) -

Proposition 15. The absolute set of the correlatiq) is the conicy? + 2xz +
yz = 0. The induced collineation leaves invariant the absolute péﬁb) of (M),
and no other point.

0 0 1 1 -1 -1
Proof. Since M = (0 1 1) , wehave M TM =10 1 1
1 0 O 0 0 1

The only eigenvector of this matrix (sé) O

Proposition 16. If ¢ = 1 mod 4 the absolute set of the correlatigV) consists of
the single poin( 7%)

If ¢ =3 mod 4 the absolute set comprises the points on the two lingsy =
+./—wz. In both casesthe induced collineation fixes the nonabsolute p(éic%),

the absolute poin( 7%) and no other point.

Proof. Since

1 2 0
N:(O 1 O),
0 0 w

the absolute set has equatian+ y)2 + wz? = 0.



10 B.C. Kestenband / Linear Algebra and its Applications 304 (2000) 1-31

If ¢ = 1 mod 4,—w € NS hence this equation has the unique squQ(ié).

If ¢ = 3 mod 4, we obtainr + y = £/ —wz.

The last sentence of the proposition is a straightforward consequence of Proposi-
tion 13, concluding the proof. [

If ¢ = 1 mod 4, we shall let J stand fof—1.
The next proposition is similar to the preceding one and we omit the proof.

Proposition 17. If ¢ = 1 mod 4 the absolute set of the correlatig®) comprises
the points on the two lines+ y = +X.

If ¢ = 3 mod 4 the absolute set consists of the unique péihit).
In both casesthe induced collineation fixes the nonabsolute pc@t), the

absolute poin( 7%) and no other point.

It is apparent nowin virtue of Proposition 6that the correlationsL), (M),
(N), (P) are mutually inequivalent.

Proposition 18. The absolute sets of the correlatiof@,), (R,), are nondegener-
ate conics. .
The induced collineations fix the nonabsolute péigw), and either twgor none

of the absolute points of the respective correlations.

Proof. The two absolute sets have equatias+ pxy + y2 + z2 = 0 andx? +
pxy +wy? +22=0,i.e.(x + 3002+ (1 — 702)y2 +z2 =0 and(x + 30y)2 +
(w — A—ll,oz)y2 +z2=0.

Sincep # £2 (for Q,) and alsow € NS (which impliesw # %,02), these two
conics are nondegenerate.

By Proposition 13, the induced collineations fix the p(@t) and the absolute

points on the line; = 0.

Lettingz = 0 andy = 1 in the equations of the two conics produces two quadratic
equations inv, neither of whose discriminant vanishes. Thus we obtain either two
points withz = 0, or none. O

Of the first four matrices in Theorem 4, only gives rise to a correlation with
a conic as its absolute set (Proposition 15). But the induced colline@dof does
not fix any nonabsolute point, unlik&,)? or (R,)?.

Therefore we have established that no two matrices listed in Theorem 4 are con-
gruent, except that, perhaps, some of the matrices of @jper R, might be con-
gruent among themselves. The next two propositions serve to elucidate this point.
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We introduced further notation:

x shall stand for an element that is not necessarily zero.
% shall stand for an element that is necessarily nonzero.
The next proposition is valid regardless of the parity of

Proposition 19. For a fixed u # 0,

1 p O 1 p 0
0 0 1 0 0 1

if and only if o’ = +p% 2@~ for some automorphism of the field.

Proof. Denote the two matrices b, K . To prove necessity, assurfig ~ K .
Then, by Definition 2, we can write

K% =1CTK,C. (6)

The point § is not an absolute point of the correlatiof®s,), (K,), but it is

fixed by the induced collineations, obviously.
By Proposition 13, no other nonabsolute point is left invariant by these collin-
eations. As a consequence (see Proposition 6 and Corollary 9), we must have

0 0 x z O
C(O):(O), so that C:(y t O).
1 ® u v s

Therefore Eq. (6) is

1 p¢ 0 X y u 1 p 0\/x z O
(0 ne O):A(z t v)(O n 0) (y t O). @)
0 0 1 0 0 s 0 0 1 u v s

This matrix equation shows that? = 1 andu = v = 0, and also that
xz+ p'tx +uty =s%p* and xz+ p'yz+ pty =0.
The last two equations imply that
o' (tx — yz) = s2p°. (8)
On the other hand, by taking determinants in Eq. (7), we get
n® = 23us?(tx — yz)z.
But As2 = 1, so this equation reduces to

1
z(ﬂl—l) 1
r=+4 , e s2=dp 2@ Dy — y2).

tx —yz

Substituting this expression fef into (8) reduces it to the equation in the state-
ment of the proposition, proving necessity.
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Sufficiency follows from the equations
o, —3(a— o
1 0 1 +pop 2@ D) /£l 0 _(1 »r
0 Mi(afl) 0 m 0 Mj(otfl) 0 u s
where thet's and—'s (if ¢ is odd) are to be matched in the usual mannét.
Proposition 20. If g is odd
1 p 0 1 p O
(o " o) . (o ) o)
0 0 1 0 0 1
for any nonvanishing, p’, wherew represents a primitive root of Gg).

Proof. Reasoning as in the proof of the preceding proposition, if the two matrices
were congruent, we would have:

1 p* O X y u 1 p 0\ /x z O
(0 1 0)2)»(2 t v)(O w 0) <y t 0).
0O 0 1 0 0 s 0O 0 1 u v s

This matrix equation impliess? = 1 and also.3ws?(tx — yz)? = 1. Buta being a
square, the last equation is an impossibilitiz]

The last two propositions have demonstrated the last three paragraphs of Theorem
4. What remains to be done to complete the proof of the theorem is to show that every
nonsingular, nonsymmetric:8 3 matrix overGF(g), ¢ odd, is congruent to one of
the matrices in that theorem. The next section is devoted to this task.

4. Equivalent correlations of planes of odd order

Some of the results in this section hold truedasdd or even. Whether or not this
is the case will be made apparent in the statement of each claim.

Proposition 21. A nonsingular matrix over a finite field is congruent to

1 % =%
* ok %

Proof. Let

0 a c
V=<b 0 e),
d f O

wherea + b, c +d, e + f are not all zero (becaus$€| + 0).
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Let

1 00 1 0O 01 0
C:(l 1 0) or (0 1 O) or (1 0 0),
0 0 1 1 0 1 1 0 1

depending upon which of the above sums, in the given order, does not vanish.
In each case, the matriX'VC has the respective expression as its first enty.

The main result in this section is in Proposition 23. But first we need the follow-

ing.
Proposition 22. Let

1 b ¢
V:(b b2 bg>, b #0, c + g,over GHg), g odd
g bc cg

Ifg=1mod4V ~P. Ifg=3mod4V ~ N.

Proof. Forg =1mod4 let
—@Bc+gb —2(c+gb Ic—ghb
C= c—g 0 Je—29) |-
4p 4p 0
ThenCTVC = —4b2(c — g)?P.
Forg = 3 mod 4, letC be as above, but witt/—w instead of J. The@TVC =
—4b%(c — g)®N. O

Proposition 23. A nonsingulai3 x 3 matrix over GKg), g odd is congruent to an
upper triangular matrix.

Proof. The first part of the proof is valid for even prime powers, too.
Let

1 b ¢
A:(d e f).
g h i

If e # bd, let
1 —d dh—eg
C:(O 1 bg—h).
0O 0O e—bd
If i # cg, let
1 —g fg-—di
C:(O 0 i—cg).
0O 1 cd-Ff

In both cases(CTAC is an upper triangular matrix.
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If e = bd andi = cg, buth — bg # cd — f, let
1 df —cd®>—g bdg—dh—g
C = (O cd— f h — bg ) .
0 1 1

Note that in this case neithér— bg norcd — f can vanish, as that would entalil
|A] = 0. Then

1 b ¢
c’ (d bd f ) c
g h «cg
is upper triangular again.
The remainder of the proof is devoted to the more complicated situation in which
e=0bd,i =cgandh —bg =cd — f.
What follows is no longer valid fog even, except in Case V (jf # 0) and VI.
There are six cases to be considered.
Casel. b = d = 0, which entail# = 0 andf = —#, so that

1 0 ¢
A:(O 0 —h).
g h cg

There are three possibilities:
(1) ¢ # g. Inthis case, foy = 1 mod 4, let

—2(c+gh —2(c+gh 2)c—gh
C=< 0 —(c —g)? J(c—g)2>-
4h 4h 0

ThenCTAC = —4h?(c — g)2P (see Theorem 4).
If ¢ = 3 mod 4, letC be as above, but witty —w replacing J, where, as always,
is a primitive root of the field. The@TAC = —4h%(c — g)2N.

2)c=g+#0,ie.
1 0 ¢
A=<o 0 _h>.
c h 2
0 —ch O
C=<—c2 —c? 0).
h 2h  h

ThenCT AC = ¢2h?L.
B)c=g=0,ie.

10 0
Az(o 0 _h>.
0 h 0

Let
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Let

h h h
C= (—1 -1 0).
h 2h h

ThenCTAC = W?L.
Casell. »=0,d # 0. Thene = 0andh = cd — f, SO

1 0 c
A:(d 0 f).
g cd—f «cg

If ¢ =1 mod 4, let
d(cd — 2f) 2d(cd — ) HQ2f —cd)
C=<4f—3cd—dg —4(cd— f) Jd(g—-c) )
d? 0 —3d?

ThenCTAC = —4d?(cd — f)?P.

Forg = 3 mod 4, letC be as above, but witt/—w in lieu of J. ThenCTAC =
—4d?(cd — f)?N.

Caselll. b #+ 0,d = 0. Thene = 0 again, andf = bg — h, so that

1 b c
A:(O 0 bg—h).
g h cg

Forg =1 mod 4, let
2b(bg —h)  b(bg—2h)  Ib(2h — bg)
C=<—4(bg—h) 4h —3bg —bc  Ib(c— g) )
0 b? —Jv?

ThenCTAC = —4b%(bg — h)?P.

Forg = 3 mod 4, proceed as in the other cases, to arrive'atC = —4b?(bg —
h)2N.

CaselV. b =d # 0 andfh = b2cg.

In this case, the equation— bg = ¢d — f becomef + h = b(c + g), whence
f242fh+ h? = b2c? + 2b%cg + b%g%. But fh = b%cg, so the last equation re-
duces to

f2+h? = b2c? + bPg? 9
Sinceh — bg = be — f +# 0, Eq. (9) further reduces o+ bg = bc + f, whence

by adding the last two equations, we obtaia- bc and f = bg.
Therefore

1 b ¢
A= <b b? bg).
g bc cg

But this is theV matrix of Proposition 22 and it has been shown therethat P
orN.
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CaseV.0# b #d #0andfh = bcdg. There are two possibilities.
(1) If f =0, thenbcdg = 0. Butbd # 0 by assumption, while = 0 would cause
the last column ofA to have only zeros. Hence

1 b ¢
f=0 = g=0 = h=cd and A:(d bd O).
0 cd O

If ¢ =1 mod 4, let
2Xd Jed cd
C=< 0 NG c )
—4¥ -3U - d-b

ThenCTAC = 4c?d?P.
If ¢ = 3 mod 4, let C be as above, but with—w instead of J. Then

1 2 0
CTAC=4wc2d2<0 1 o)

o0 &
and
12 0
diag1, 1, w) (0 1 0) diag(l, 1, w)=N,
o0 1
so thatA ~ N.
(2) If f +# 0, the parity ofg is not relevant.
Let
—bf 0 —bdg
C=< 0 bd bg—h).
bd O bd

We first need to make sure th@tis nonsingular.

We havelC| = b3d2(dg — f).If |C| = 0, thenf = dg. If so, the equatiorf i =
bedg reduces tdh = be (becausef + 0). As a consequence, the equatton bg =
cd — f becomesh(c — g) =d(c — g). As b #+ d by assumption, we must have
¢ = g. Butthenh = bg, which entail§A| = 0. ThereforeC is nondegenerate.

Now one verifies that

1 b ¢
c’ (d bd f ) C
g h «cg
is upper triangular indeed.

CaseVl. bd #+ 0 andfh #+ bcdg. Here again it does not matter whetlgeis odd
or even.

Let
0 bcdgffh

b(f—cd)
L
0 1

0
C=|_L
bd
1
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One verifies, using the equatian- bg = cd — f, that
1 b ¢
cT (d bd f ) c
g h «cg

is an upper triangular matrix.
The proof is now complete.

In the light of the last proposition, it suffices to prove that every upper triangular
matrix is congruent to one of the matrices listed in the statement of Theorem 4. First
we have the following.

Proposition 24. Let

1 ¢t v
A= (0 n u) , nrv#0,0verGF(q).
0 0 r

If g is an odd prime powethen

1 %« O
either A~ L or A~<O % *>
0 0 =

If g is a power o2, then

1 %« O
A~<0 1 *)
0 0 1

Proof. There are four possibilities which need to be analyzed separately. In the first
three cases, the proof is valid for all prime powers. In each of these cases we will
construct a matrixC such that

1 x O
CTAC=<0 * *>
0 0 =

If ¢ is even, every element is a square, so there was no loss of generality in
replacing the twa entries with 1's in the statement of the proposition.

Casel. uv = rt. This case includes the possibilily= ¢ = 0.
Then

1 0 O
C:(O 0 v).
0 1 —¢

Casell. uv # rt andnv? — tuv + rt? # 0. The possibilityx # 0,7 = 0, is part
of this case.
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Then
1 0 0
C = (O 1 —v).
O rtrivMU t
Caselll. uv # rt andnv? — ruv + u? + 0. This includes the possibility = 0,
t #0.
Then
u -1 0
C = (—v L=t 0
0 0 1

CaselV. uv # rt and nv® — tuv + rt?> = nv? — tuv + u? = 0. Then we have
r =u?/t?, clearly.
The approach in this case depends upon the parigy of

Let firstg be odd.
As we have just seen, the last entry ofA, must be a square.#f € NS, let

1 0 O
cC=]0 0 -1
o t 1~
We get o
1 % *
CTAC=<0 1 *)
0 0 n

As n € NS, this last matrix cannot fulfill the requirements of Case IV, hence (at
least) one of the other cases applies.

If n € SQ, we have
1 tv

1 ¢ Lo 1 ¢ 1ﬁ7
diag(1, —.Z) [0 diag[ 1, —. 2 ) = -+
g(’ﬁ’u) S g(’ﬁ’u) O L

0 0 0 0 1
i.e.

1 L& e
~ t
A o 1 £

0 0 1

In t = 2/n, the equatiomv? — ruv 4+ u? = 0 in the statement of the case un-
der consideration becomés./n — u)? = 0, whenceu = v/n and thenrv/u =
2/nv/vy/n = 2. Therefored ~ L in this case.

If t = —2./n, we obtain likewise

1 -2 2
A~<0 1 —2).
O 0 1
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But the last matrix is obviously congruentfg soA ~ L again.
If r + +£2./n, chooseb such thab? + (t//n)b + 1 € NS, which is always pos-
sible, by virtue of Proposition 11.

Let
1 0 0
t 1
0 1 1

Sinceb is not a zero of the trinomial® + (r//n)x + 1, C is nonsingular.
Then one calculates

1 = v

Jn u

T t
C 0 1 W C,

0 O 1

and it turns out to be an upper triangular matrix whose last entr§is (¢ //n)b +
1 € NS, and thus the other cases apply.
Now assume is power of 2. Let

t 3
1+2 1452

N
_ 2 1
C= 0 Ly NG
i i 0
Then
1 ¢ v %}[222 0
c"lon ulc=|og n 12
00 2 PO
I 0 O 1

As every element of; F (¢), ¢ even, is a square, the conclusion is immediate.

We will now demonstrate that for odd prime powers, matrices of form

1 = 0
(0 % *)
0 0 =
are congruent to one of the matrices in the statement of Theorem 4.

First note that every matrix of that form is congruent to one of the following
matrices:

1 x O 1 %« O 1 % 0 1 % O
(0 w *), (0 w *) (O 1 *) (0 1 *)
0 0 1 0 0 w 0 0 w 0 01
wherew is a primitive root of the field.

Proposition 25. Letq be an odd prime powerand, in addition if ¢ =1 mod 4,
assume =+ +J. Then
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If s2 412 = p2, we have

1 s O
(0 w t)NRp.
0 0 1

If s2 + 12 € NS let p2 = L(s2 +12). Then

1 s O
(O w t)NQp.
0 0 1

Proof. In the first case, let

=
C = 0 —-w 0
Then
1 s O
CT<O w t)C:szp.
0 0 1

The conditions # +J is necessary to ensure the nonsingularity(pfthe next
proposition will show what happenssif= +Jr.
In the second case, let

A

I

[any
sl o,
Dl oDl

Then

1 s O

T

C (O w t)C:pr. 1
0 0 1

Proposition 26. Letg = 1 mod 4 Then
1 £ O
(0 w t) ~ M.
0O 0 1
Proof. Let
1 X O
D= (O w t) .
0 0 1

The proof is quite similar if the minus sign is used.
The absolute set of the correlatioP) has equation? + Jxy 4+ wy? + tyz +
22 =0, i.e.itis the conigx + 3Jy)2 + wy? + (3ty +2)? = 0.
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We have
1 F 0
-T J 2
D'D=|-2 14°C L
N 3 12
v Two !t 1-3%

and it is easy to see théfcj ) is an eigenvector of this matrix (as a matter of fact it

is the only eigenvector), hence the collineati@? fixes the point( 75)

The image of this point under the correlatioR)(is the line: <7§>(D), with
equatior(xyz)D(?) =0,ie.—Jx+ty+z=0.

If this line contained another absolute pdintve would havés € b(?), <7§)(D)’

which entails( ?E) b € b® in other words the lind® would be the same as

~3\ (D) L .
( g) , and this is not possible.

Since the absolute set 0] is a (¢ + 1)-arc, and there arg + 1 lines through
every point, it follows that every line througﬁﬂj), except( 7§)(D), contains one
other absolute point offg).

Let then(ir?) be the absolute point ofY) distinct from(frf), on the line dx +

_1\ (D)
(w—12)y —tz = 0; this line is not( é) , asw # 0. We have

-JO0 1 —J Ou 0 0 —-Ju+tv+r
01—t |D 0 1v =< 0 w wv ):F.
uv r 1—¢tr ~Ju+tv+r O 0
Then
dia wh? F - dia wh?
g I rIPHILE S ¢ I RRIPHIIEE
0 0 1
=w3v2(0 1 1). O
1 0 O

The last two propositions have disposed of the matrices of the form

1 = O
(0 w *)
0 0 1

The next three propositions serve to reduce the matrices of the remaining three
types to eithet or
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1 = 0

(0 % O) .
0 0 =
Proposition 27.

1 s O 1 % 0
(0 w ot ) ~ (0 1 = ) over a finite field
0

0 0 w 0 w
Proof. Let

0 s w
C=<0 -1 0).
1 L 0
w

Then

Proposition 28. Let

1 s O
A= (0 t) , =0, over afinite field
0 r

o

Then

*

1 « O
A~<0 0) if and only if r& +1t? 0.
0 0 =

Proof. We have in this case

1 S 0
A TA=[ —s 1—s2 t .
S 2-pt 1-2

7

The characteristic polynomial of T A is (1 — A)[A2 + (s2 + é — A +1].
t
If rs2 + 1% = 0, the only eigenvalue is 1 and the only eigenvect rés .

But this point is readily seen to be an absolute point of the correlaldnl{
follows that the collineatioriA)? does not leave invariant any nonabsolute point of
(A). Therefore, by Proposition 6, Corollary 9 and Proposition 13,

1 %= O
A74<0 % O).
0 0 =
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If rs? + 12 +0, let

rs
§ t

C=1|1 0 O
0 1 1

L
s

Then
1 425 0

ctac=(o r+2%¢ o |. O
0 0 r+o

The next proposition deals with the situation in whisR + 1> = 0, but only ifg
is odd.

Proposition 29.

1 s O
01 lz ~M over GF(q), q odd.
0 0 —2—2

Proof. Denoting the first matrix by, the absolute set of the correlation) is the
conic(x + %sy)2 + 32— (% — %sy)2 =0.

As in the preceding proposition, the absolute p i'n?c) is the unique point fixed

by the induced collineation. Since the absolute setis-a 1)-arc, every line through

s s\ (A _ . -
(’é ) except(’é ) , contains one, and only one, absolute point &j @istinct

from (tés).

Let

(0)+(2)

. . 5\ (4) u . s
be a point on the Ime{’é ) . Then Iet<v> be the unique absolute point distinct

s . (A) . .
from (té ) on the Ime(‘«i) . The equations of the two lines are:

t/s\ W ¢ /2
0 o—x+i1y——5z2=0,
s

1 N

d 2
e o d+se)x+(e+1) —s—2z=0.
1
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One now verifies that

1 s 0 0 0 m
c'fo 1 = c:(o a b), mab + 0,
00 -2 m 0 0

where
u
’U .
,

gd
C=10 e
11

The actual expressions far b, m are not relevant. Finally:

b2 0 0 m b2
diag<—,b,a> (O a b)diag(—,b,a) :ab2<
m m
m 0 O

0 0 1
011
1 00

).D

The next proposition constitutes the last link in the proof of Theorem 4.

Proposition 30. Every matrix of the form

1 = O
(0 % O) over GH(q), qodd
0 0 =

is congruent to a matrix in the statement of Theo#em

Proof. Let
0O —w O
C:(l 0 O).
0O 0 1
Then
1 p O
cT<o w o>c=pr.
0O 0 w

Let nextp # 0 or 2. We will show that

1 p O
(0 1 0) ~ Q, forsomep’ #0.
0 0 w

Choosez such thaty = a? + pa + 1 € NS Hencea + p # 0, evidently. Let

1
Cl_mo
C=11 1 ol.
0 0 1
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Then
194
150 Y arp O
T _ Y
c(ggo)c_omo
w 0 0 w

As the main diagonal is made up of nonsquares, the conclusion is obviaus.
5. Inequivalent correlations of planes of even order
The last paragraph of Theorem 5 follows from Proposition 19.

Proposition 31. The absolute set of the correlati@fi,) is a nondegenerate conic
whose nucleug&.k.a. knoy is the nonabsolute poir(t%).

The induced collineation leaves invariant the p(@t) and either two or none
of the absolute points of the respective correlation.

Proof. Let
1p—120
_ 1
c=|o0 ; 0
1p—121
Then
0 1 1
T 1
c’s,c=10 0 =
1p—121

The absolute set of the correlation defined by the last matrix has equatier?,
which is the canonical form of a nonsingular conic [4, Theorem 5.1.7]. Its nucleus is
<§> ButC(?) = (g) so the nucleus of the coni@ + pxy + y? + z2 = O is also

o),

1

By Proposition 13, the induced collineation leaves invariant the F(oii)tand the
absolute points witlh = 0, if any.

As in the casg odd, the equation® + px + 1 = 0 has two roots, or none.]

Proposition 32. Let

1 v O
V=<O 1 v), v # 0, over GHQ) even
0 0 1

If the trinomialx? + vx + 1 has the zeros, 1/e, the absolute set of the correla-
tion (V) consists of the two lines+ ey + z = 0andx + y/e +z = 0.
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If the above trinomial has no zeros, the absolute set of the correl@tigrrom-
prises one pointnamely(%).

In both cases, the induced collineation leaves invariant the absolute @Dﬁt
and no other point.

Proof. The absolute set of{) has equation? + vxy + y2 + vyz + z2 = 0. The
point é is clearly absolute.
If y # 0, the above equation can be written as

() () o

If the trinomial x2 + vx + 1 has the zeros, 1/e, Eq. (10) produces two lines:
X+ y+z=yJevandx +y+z =y v/e.

Butv =-¢+ 1/e, S0 /ev = e + 1 and/v/e = 1+ 1/e.

As a consequence, the two lines become ey +z =0 andx + y/e +z =0,
as claimed.

If said trinomial has no zeros, Eq. (10) has no solution. About the induced collin-
eation:

With V as in the statement of the proposition, we have

1 v 0
V_TVz(v v2+1 v )
v 34 u 241

This matrix has 1 as its unique eigenvalue, ééa as its unique eigenvector[]

An immediate consequence of the last proposition is that if the trinardial
vx + 1 has no zeros,

1 v 0 1 w+i O
<Olv)o°0 1w+,
001 0 0 1

because the trinomiaf + (w + 1/w)x + 1 has the zeros, 1/w.
It now follows from Proposition 13 that the next to last paragraph of Theorem 5
holds true.

6. Equivalent correlations of planes of even order
Proposition 33. Let

1 s O 1
S:(O 1 s), V:(O
0 01 0

0

or <

v) , over GHQ), g even
1
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If both trinomialsx? + sx + 1, x2 + vx + 1 are factorable or if both are not
factorable thenS ~ V. Otherwise S~V.

Proof. The last sentence is a trivial consequence of Proposition 32.
Assume both trinomials do, or both do not, have zeros. Consider the following
variabler in the equation:

5272 + 212 + 50?1 + 02 =0, (11)

It can be rewritten as

()] s) oo

According to Proposition 12, this equation has solutiongfdChoose one of the
values oft thus obtained and let
(s + t)vzr v3 + svt V2
C = < V21 V31 +svt? Ve ) .
0 SUT 5272

Now one verifies, making repeated use of Eq. (11), a§C = s2v2t4v. O
The preceding proposition justifies the use of the mal¥ixn Theorem 5: as

mentioned already, the trinomiaf + (w + 1/w)x + 1 is factorable.
By Proposition 21, a nonsingular matrix is congruent to

1 % %
* k%

Proposition 34. Let

1 b ¢
D:(b b? bg), b +0, ¢ + g, over GHQ), g even
g bc cg

ThenD ~ W.

Proof. If ¢ #£0, let

wzc—i-g w4c+g 8
we(w?+1)  w2e(w?+1) we
C = w(w?ctg) whctg w
be(w2+1) be(w?41) b
w241 w41 w241
we w2c we
Then
2 2
cc+g
C'DC = w.

c2



28 B.C. Kestenband / Linear Algebra and its Applications 304 (2000) 1-31

If C =0, then
1 b O
D:(b b? bg),
g 0 O
hence
1 1 1 1 0
diag(1, -,1) - D-diag(1,-,1)=(1 1 ¢ |)=D".
b b
g 0 O
Let
0 gw? qw®
C=<gw5~|—gw3 gw6 gw5 )
w® + w w+1D8 w+w

Then
C'DC=g’wt+uwhHw. O

Proposition 35. A nonsingular3 x 3 matrix over GKg), ¢ even is congruent to
an upper triangular matrix.

Proof. Let

1 b ¢
A:(d e f).
g h i

The following three possibilities have been examined in the proof of Proposition 23:
e# bd;i # cg;e=bdandi = cg, buth + bg # cd + f.

We need to discuss the situation in whick:= bd, i = cg andh + bg = cd + f.
The same six cases as in Proposition 23 have to be dealt with.

Casel. b =d =0, i.e.e =0aswell,and alsé = f. Then

1 0 ¢
Az(oo,,),
g h cg

with ¢ # g (becausel is not supposed to be symmetric). Let
(cw+ gwdW? +Dh  (c +wW?+Dh  (cw + gw3)(w? + DA
C = 0 w2(c + g)? wi(c + g)?
(w® + w)h (w+ 1) (w® 4+ w)h
Then

1 0 ¢

cT (o 0 & ) C = w8+ wh (2 + g?Hn?w.
g h «cg

Casell. b =0,d #+ 0. Thene =0 andh = cd + f, so
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1 0 c
A:(d 0 f).
g cd+f cg

We have

1 0 0 10 0 1 0 e
(o 1 0>A<0 1 g/d):(d 0 f).
0 g/d 1 00 1 0 cd+f O

Assume first that #+ 0. Then let

2 4 2 2 2
Led+2Hy  whutleg g udgly wid(ed + f)
C = c we 0
whw? 41 @D +DSF | wbiw?4l WD (cd+f)
w2 d+ w2c w3c + w3 d w2c

It follows that

1 0 c 4

1

CT<d 0 f)C: Y cd+ pRw.
0 cd+f O w

Assume next that = 0. Theni = 0 andf = &, so that

1 00
A=<d 0 h>
g h O

Let
1
1 T 1
w241 w4g w1 w241 w2g
C= d +(w4+l)h wd d +(w4+l)h
wid w2d
Then (wHDh 0 (wHDh
1 0 O
CT<d 0 h)C:wZW.
g h O

Caselll. b #0,d = 0. Thene = 0 again, andf = bg + h, SO

1 b c
A=<0 0 bg—l—h).
g h g
Then

1 0 O 10 O 1 b 0
(0 1 O)A(O 1 c/b)z(O 0 bg+h>.
0 ¢/b 1 0 0 1 g h 0

Assume first that + 0 and let
2 4 2 2 2
ww-gl(bg —‘r/’l) w +wuf)5 +1bg + ww—:"i_lh %bg + ww-glh
C = 0 wg g
4 6 6,2 4,2 4
I B O
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One obtains
1 b 0 4
1
CT<O 0 bg+h)C=wwj2L (bg + h)2W.
g h 0
If ¢ =0, then
1 b ¢
A=<0 0 h)
0O n O
Let
1
1 = 1
2+1 2 4+1 2+l 4
C= wb +(wlf+cl)h wwb wb +(wlf+cl)h
leh O lfﬂvh
(w+1)h (w3 )h
Then
1 b ¢
CT<O 0 h)C:wZW.
0O h O

CaselV. b = d + 0 andfh = b2cg.

The relatiom: + bg = cd + f becomesf + h = bc + bg. As a consequence,
andh are the roots of the equatiai 4 (bc + bg)x + b%cg = 0, i.e.bc andbg.

We cannot havé = bg (or f = bc), because thed would be singular. Hence
h = bc and f = bg and we have obtained the matrXx in Proposition 34, which
was shown there to be congruentib

CaseV.0+#£b +d +0andfh = bcdg.

As in the case in which is odd, there are two possibilities.

(1) f = 0, which entails

1 b ¢
A= (d bd 0),
O c¢d O

exactly as there. Let

bed(w3+ 1) cd (w?+1)(5+bw?) cd(w?+1)(wb+4)
b+d b+d b+d
C = cd(w3+%) (w2+1)bc+(w4+wi2)cd (w+%)bc+(w3+w)cd
b+d b+d b+d
w+2d 1+ )L +bw?) A+ H)bw+4)
Then
1
lec (w+1)8221w+w O1
C'ld bd 0)C= — d“| 0 1 w+
0 ¢d O v 0 o0 1

(2) f # 0: proceed as in Proposition 23.
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CaseVIl. bd # 0andfh #+ bcdg: proceed as in Proposition 23]

From Propositions 35 and 24 we infer that every nonsingubar33matrix over
GF(g), g even, is congruent to a matrix of form

1 s O
(0 1 t).
0 0 1

If s =1, we get one of the matricds, W that appear in Theorem 5.
If s # ¢, then

1 s O
(0 1 t)~Sp
0 0 1

for somep + 0, by Proposition 28.
This concludes the proof of Theorem 5.
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