229 research outputs found

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Sex-Dependent Influences of Obesity on Cerebral White Matter Investigated by Diffusion-Tensor Imaging

    Get PDF
    Several studies have shown that obesity is associated with changes in human brain function and structure. Since women are more susceptible to obesity than men, it seems plausible that neural correlates may also be different. However, this has not been demonstrated so far. To address this issue, we systematically investigated the brain's white matter (WM) structure in 23 lean to obese women (mean age 25.5 y, std 5.1 y; mean body mass index (BMI) 29.5 kg/m(2), std 7.3 kg/m(2)) and 26 lean to obese men (mean age 27.1 y, std 5.0 y; mean BMI 28.8 kg/m(2), std 6.8 kg/m(2)) with diffusion-weighted magnetic resonance imaging (MRI). There was no significant age (p > 0.2) or BMI (p > 0.7) difference between female and male participants. Using tract-based spatial statistics, we correlated several diffusion parameters including the apparent diffusion coefficient, fractional anisotropy (FA), as well as axial (lambda(parallel to)) and radial diffusivity (lambda(perpendicular to)) with BMI and serum leptin levels. In female and male subjects, the putative axon marker lambda(parallel to) was consistently reduced throughout the corpus callosum, particularly in the splenium (r = -0.62, p < 0.005). This suggests that obesity may be associated with axonal degeneration. Only in women, the putative myelin marker lambda(perpendicular to) significantly increased with increasing BMI (r = 0.57, p < 0.005) and serum leptin levels (r = 0.62, p < 0.005) predominantly in the genu of the corpus callosum, suggesting additional myelin degeneration. Comparable structural changes were reported for the aging brain, which may point to accelerated aging of WM structure in obese subjects. In conclusion, we demonstrate structural WM changes related to an elevated body weight, but with differences between men and women. Future studies on obesity-related functional and structural brain changes should therefore account for sex-related differences

    S100B and homocysteine in the acute alcohol withdrawal syndrome

    Get PDF
    Elevations of serum homocysteine levels are a consistent finding in alcohol addiction. Serum S100B levels are altered in different neuropsychiatric disorders but not well investigated in alcohol withdrawal syndromes. Because of the close connection of S100B to ACTH and glutamate secretion that both are involved in neurodegeneration and symptoms of alcoholism the relationship of S100B and homocysteine to acute withdrawal variables has been examined. A total of 22 male and 9 female inpatients (mean age 46.9 ± 9.7 years) with an ICD-10 diagnosis of alcohol addiction without relevant affective comorbidity were examined on admission and after 24, 48, and 120 h during withdrawal. S100B and homocysteine levels in serum were collected, and severity of withdrawal symptoms (AWS-scale), applied withdrawal medication, initial serum ethanol levels and duration of addiction were recorded. Serum S100B and homocysteine levels declined significantly (P < .05) over time. Both levels declined with withdrawal syndrome severity. Females showed a trend to a more intense decline in serum S100B levels compared to males at day 5 (P = .06). Homocysteine levels displayed a negative relationship to applied amount of clomethiazole (P < .05) and correlated with age of onset of addiction. No withdrawal seizures were recorded during the trial. As it is known for homocysteine, S100B revealed to decline rapidly over withdrawal treatment in alcoholism. This effect is more pronounced in female patients. S100B could be of relevance in the neurobiology of alcohol withdrawal syndromes. It may be indirectly related to the level of stress level or glutamatergic activity during alcohol withdrawal

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Prefrontal cortex activation and young driver behaviour: a fNIRS study

    Get PDF
    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population

    Neonatal immune responses to TLR2 stimulation: Influence of maternal atopy on Foxp3 and IL-10 expression

    Get PDF
    BACKGROUND: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy. METHODS: We analyzed immune responses of cord blood mononuclear cells (CBMC) from 50 healthy neonates (31 non-atopic and 19 atopic mothers). Cells were stimulated with the TLR2 agonist peptidoglycan (Ppg) or the allergen house dust mite Dermatophagoides farinae (Derf1), and results compared to unstimulated cells. We analyzed lymphocyte proliferation and cytokine secretion of CBMC. In addition, we assessed gene expression associated with T regulatory cells including the transcription factor Foxp3, the glucocorticoid-induced TNF receptor (GITR), and the cytotoxic lymphocyte antigen 4 (CTLA4). Lymphocyte proliferation was measured by (3)H-Thymidine uptake, cytokine concentrations determined by ELISA, mRNA expression of T cell markers by real-time RT-PCR. RESULTS: Ppg stimulation induced primarily IL-10 cytokine production, in addition to IFN-γ, IL-13 and TNF-α secretion. GITR was increased following Ppg stimulation (p = 0.07). Ppg-induced IL-10 production and induction of Foxp3 were higher in CBMC without, than with maternal atopy (p = 0.04, p = 0.049). IL-10 production was highly correlated with increased expression of Foxp3 (r = 0.53, p = 0.001), GITR (r = 0.47, p = 0.004) and CTLA4 (r = 0.49, p = 0.003), independent of maternal atopy. CONCLUSION: TLR2 stimulation with Ppg induces IL-10 and genes associated with T regulatory cells, influenced by maternal atopy. Increased IL-10 and Foxp3 induction in CBMC of non-atopic compared to atopic mothers, may indicate an increased capacity to respond to microbial stimuli

    Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus

    Get PDF
    β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE

    Brain Cortical Mapping by Simultaneous Recording of Functional Near Infrared Spectroscopy and Electroencephalograms from the Whole Brain During Right Median Nerve Stimulation

    Get PDF
    To investigate relationships between hemodynamic responses and neural activities in the somatosensory cortices, hemodynamic responses by near infrared spectroscopy (NIRS) and electroencephalograms (EEGs) were recorded simultaneously while subjects received electrical stimulation in the right median nerve. The statistical significance of the hemodynamic responses was evaluated by a general linear model (GLM) with the boxcar design matrix convoluted with Gaussian function. The resulting NIRS and EEGs data were stereotaxically superimposed on the reconstructed brain of each subject. The NIRS data indicated that changes in oxy-hemoglobin concentration increased at the contralateral primary somatosensory (SI) area; responses then spread to the more posterior and ipsilateral somatosensory areas. The EEG data indicated that positive somatosensory evoked potentials peaking at 22 ms latency (P22) were recorded from the contralateral SI area. Comparison of these two sets of data indicated that the distance between the dipoles of P22 and NIRS channels with maximum hemodynamic responses was less than 10 mm, and that the two topographical maps of hemodynamic responses and current source density of P22 were significantly correlated. Furthermore, when onset of the boxcar function was delayed 5–15 s (onset delay), hemodynamic responses in the bilateral parietal association cortices posterior to the SI were more strongly correlated to electrical stimulation. This suggests that GLM analysis with onset delay could reveal the temporal ordering of neural activation in the hierarchical somatosensory pathway, consistent with the neurophysiological data. The present results suggest that simultaneous NIRS and EEG recording is useful for correlating hemodynamic responses to neural activity

    Functional imaging of cognition in an old-old population: A case for portable functional near-infrared spectroscopy

    Get PDF
    In this study, functional near-infrared spectroscopy (fNIRS) was used to record brain activa- tion during cognitive testing in older individuals (88±6yo; N = 19) living in residential care communities. This population, which is often associated with loss of personal independence due to physical or cognitive decline associated with aging, is also often under-represented in neuroscience research because of a limited means to participate in studies which often take place in large urban or university centers. In this study, we demonstrate the feasibility and initial results using a portable 8-source by 4-detector fNIRS system to measure brain activity from participants within residential care community centers. Using fNIRS, brain sig- nals were recorded during a series of computerized cognitive tests, including a Symbol Digit Coding test (SDC), Stroop Test (ST), and Shifting Attention Test (SAT). The SDC and SAT elicited greater activity in the left middle frontal region of interest. Three components of the ST produced increases in the right middle frontal and superior frontal, and left superior frontal regions. An association between advanced age and increased activation in the right middle frontal region was observed during the incongruent ST. Although none of the partici- pants had clinical dementia based on the short portable mental status questionnaire, the group performance was slightly below age-normed values on these cognitive tests. These results demonstrate the capability for obtaining functional neuroimaging measures in resi- dential settings, which ultimately may aid in prognosis and care related to dementia in older adults
    corecore