683 research outputs found

    Pion form factors with improved infrared factorization

    Get PDF
    We calculate electromagnetic pion form factors with an analytic model for αs(Q2)\alpha_{\rm s}(Q^2) which is infrared (IR) finite without invoking a ``freezing'' hypothesis. We show that for the asymptotic pion distribution amplitude, Fπ0γ∗γF_{\pi ^{0}\gamma ^{*}\gamma} agrees well with the data, whereas the IR-enhanced hard contribution to FπF_{\pi} and the soft (nonfactorizing) part can jointly account for the data.Comment: 12 pages; 3 figures as PS files (1 figure added); modified text; added references. To appear in Phys. Lett.

    γN→Δ\gamma N \to \Delta transition form factors in Quenched and NF=2N_F=2 QCD

    Full text link
    Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition γN→Δ\gamma N\to \Delta are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.Comment: Lattice2003(Matrix), 3 page

    A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions

    Full text link
    We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.Comment: 38 pages, 1 figure, references update

    Calculation of the N to Delta electromagnetic transition matrix element

    Full text link
    We present results on the ratio of electric quadrupole to magnetic dipole amplitudes, REM=GE2/GM1R_{EM}={\cal G}_{E2}/{\cal G}_{M1}, for the transition γNtoΔ\gamma N to \Delta from lattice QCD. We consider both the quenched and the 2-flavor theory.Comment: 3 pages, 4 figures, talk presented at Lattice2002(matrixel); Layout of figures adjuste

    Meson decay constants from Nf=2 clover fermions

    Get PDF
    We present recent results for meson decay constants calculated on configurations with two flavours of O(a)-improved Wilson fermions. Non-perturbative renormalisation is applied and quark mass dependencies as well as finite volume and discretisation effects are investigated. In this work we also present a computation of the coupling of the light vector mesons to the tensor current using dynamical fermions.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark masses

    The Consequences of Non-Normality

    Get PDF
    The non-normality of Wilson-type lattice Dirac operators has important consequences - the application of the usual concepts from the textbook (hermitian) quantum mechanics should be reconsidered. This includes an appropriate definition of observables and the refinement of computational tools. We show that the truncated singular value expansion is the optimal approximation to the inverse operator D^{-1} and we prove that due to the gamma_5-hermiticity it is equivalent to gamma_5 times the truncated eigenmode expansion of the hermitian Wilson-Dirac operator

    Quaternionic and Poisson-Lie structures in 3d gravity: the cosmological constant as deformation parameter

    Full text link
    Each of the local isometry groups arising in 3d gravity can be viewed as the group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement, and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, amongst others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description.Comment: 34 pages, minor corrections, references adde

    Momentum dependence of the N to Delta transition form factors

    Full text link
    We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at β=6.0\beta=6.0 on a 323×6432^3 \times 64 lattice. We address a number of technical issues such as the optimal combination of matrix elements and the simultaneous overconstrained analysis of all lattice vector momenta contributing to a given momentum transfer squared, Q2Q^2.Comment: Talk presented at Lattice 2004 (spectrum), Fermilab, 21-26 Jun. 2004. 3 pages, 3 figures. One typo in phenomenological Ansatz correcte

    Distribution Amplitudes of Pseudoscalar Mesons

    Get PDF
    We present results for the first two moments of the distribution amplitudes of pseudoscalar mesons. Using two flavors of non-perturbatively improved clover fermions and non-perturbative renormalization of the matrix elements we perform both chiral and continuum extrapolations and compare with recent results from models and experiments.Comment: 7 pages, 4 figures, based on presentation at Lattice 200
    • …
    corecore