We define and discuss classical and quantum gravity in 2+1 dimensions in the
Galilean limit. Although there are no Newtonian forces between massive objects
in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on
the topology of spacetime there are typically finitely many topological degrees
of freedom as well as topological interactions of Aharonov-Bohm type between
massive objects. In order to capture these topological aspects we consider a
two-fold central extension of the Galilei group whose Lie algebra possesses an
invariant and non-degenerate inner product. Using this inner product we define
Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group.
The particular extension of the Galilei group we consider is the classical
double of a much studied group, the extended homogeneous Galilei group, which
is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure
of the doubly extended Galilei group, and quantise the Chern-Simons theory
using a Hamiltonian approach. Many aspects of the quantum theory are determined
by the quantum double of the extended homogenous Galilei group, or Galilei
double for short. We study the representation theory of the Galilei double,
explain how associated braid group representations account for the topological
interactions in the theory, and briefly comment on an associated
non-commutative Galilean spacetime.Comment: 38 pages, 1 figure, references update