research

Quaternionic and Poisson-Lie structures in 3d gravity: the cosmological constant as deformation parameter

Abstract

Each of the local isometry groups arising in 3d gravity can be viewed as the group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement, and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, amongst others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description.Comment: 34 pages, minor corrections, references adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019