10 research outputs found

    Recommendation and Acceptance of Counselling for Familial Cancer Risk in Newly Diagnosed Breast Cancer Cases

    No full text
    Background: In clinical routine, not every patient who is offered genetic counselling and diagnostics in order to investigate a familial cancer risk predisposition opts for it. Little is known about acceptance of counselling and testing in newly diagnosed breast cancer cases in Germany. Methods: All primary breast cancer cases and patients with DCIS (ductal carcinoma in situ) treated at the University Hospital of Dresden between 2016 and 2019 were included. The number of tumor board recommendations for genetic counselling on the basis of the GC-HBOC risk criteria was recorded. Acceptance was analyzed by number of cases with counselling in the GC-HBOC-Center Dresden. Results: Of 996 primary breast cancer and DCIS cases, 262 (26.3%) were eligible for genetic counselling. Recommendation for genetic counselling was accepted by 64.1% (168/262). Of these 90.5% (152/168) opted for molecular genetic analysis. The acceptance rate for counselling increased between 2016 and 2019 from 58.3 to 72.6%. Altogether, 20.4% (31/152) patients were found to carry a pathogenic variant in the breast cancer genes BRCA1 or BRCA2. Conclusion: Acceptance of recommendation is increasing as clinical consequences augment. Optimization in providing information about hereditary cancer risk and in accessibility of counselling and testing is required to further improve acceptance of recommendation

    The conjugated antimetabolite 5-FdU-ECyd and its cellular and molecular effects on platinum-sensitive vs. -resistant ovarian cancer cells in vitro

    No full text
    Background: Resistance to platinum-based chemotherapy is a clinical challenge in the treatment of ovarian cancer (OC) and limits survival. Therefore, innovative drugs against platinum-resistance are urgently needed. Our therapeutic concept is based on the conjugation of two chemotherapeutic compounds to a monotherapeutic pro-drug, which is taken up by cancer cells and cleaved into active cytostatic metabolites. We explore the activity of the duplex-prodrug 5-FdU-ECyd, covalently linking 2'-deoxy-5fluorouridine (5-FdU) and 3'-C-ethynylcytidine (ECyd), on platinum-resistant OC cells. Methods: In vitro assays and RNA-Sequencing were applied for characterization of 5-FdU-ECyd treated platinum-sensitive A2780 and isogenic platinum-resistant A2780cis and independent platinum-resistant Skov-3-IP OC cells. Results: Nano molar 5-FdU-ECyd concentrations induced a rapid dose-dependent decline of cell viability in platinum-sensitive and -resistant OC cells. The effect of 5-FdU-ECyd was accompanied by the formation of DNA double strand breaks and apoptosis induction, indicated by a strong increase of pro-apoptotic molecular markers. Moreover, 5-FdU-ECyd efficiently decreased migration of platinum-resistant OC cells and inhibited clonogenic or spheroidal growth. Transcriptome analysis showed early up-regulation of CDKN1A and c-Fos in both, platinum-resistant and -sensitive cells after 5-FdU-ECyd treatment and de-regulation of distinct cellular pathways involved in cell cycle regulation, apoptosis, DNA-damage response and RNA-metabolism. Combined treatment of 5-FdU-ECyd and cisplatin did not show a synergistic cellular response, suggesting the potential use of 5-FdU-ECyd as a monotherapeutic agent. Conclusion: Our data provide novel mechanistic insight into the anti-tumor effect of 5-FdU-ECyd and we hypothesize that this duplex-prodrug could be a promising therapeutic option for OC patients with resistance to platinum-based chemotherapy

    The histone demethylase UTX regulates stem cell migration and hematopoiesis

    No full text
    Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis

    Identification and Functional Testing of ERCC2 Mutations in a Multi-national Cohort of Patients with Familial Breast- and Ovarian Cancer

    No full text
    The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription). In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC) predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense), all absent or very rare in the ExAC database. While 16 mutations were unique, 9 mutations showed up repeatedly with population-specific appearance. Ten out of eleven mutations that were tested exemplarily in cell-based functional assays exert diminished excision repair efficiency and/or decreased transcriptional activation capability. In order to provide evidence for BC/OC predisposition, we performed familial segregation analyses and screened ethnically matching controls. However, unlike the recently published RECQL example, none of our recurrent ERCC2 mutations showed convincing co-segregation with BC/OC or significan

    Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery

    Full text link
    Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 () and sensitivity to knockdown, and it can be modeled . Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following knockdown in the -high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the -high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high--expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery

    ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage

    No full text
    Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATMdeficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. (C) 2017 AACR

    Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease

    No full text
    Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component alpha-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction

    Mortality by age, gene and gender in carriers of pathogenic mismatch repair gene variants receiving surveillance for early cancer diagnosis and treatment : a report from the prospective Lynch syndrome database

    Get PDF
    Background The Prospective Lynch Syndrome Database (PLSD) collates information on carriers of pathogenic or likely pathogenic MMR variants (path_MMR) who are receiving medical follow-up, including colonoscopy surveillance, which aims to the achieve early diagnosis and treatment of cancers. Here we use the most recent PLSD cohort that is larger and has wider geographical representation than previous versions, allowing us to present mortality as an outcome, and median ages at cancer diagnoses for the first time.Methods The PLSD is a prospective observational study without a control group that was designed in 2012 and updated up to October 2022. Data for 8500 carriers of path_MMR variants from 25 countries were included, providing 71,713 years of follow up. Cumulative cancer incidences at 65 years of age were combined with 10-year crude survival following cancer, to derive estimates of mortality up to 75 years of age by organ, gene, and gender.Findings Gynaecological cancers were more frequent than colorectal cancers in path_MSH2, path_MSH6 and path_PMS2 carriers [cumulative incidence: 53.3%, 49.6% and 23.3% at 75 years, respectively]. Endometrial, colon and ovarian cancer had low mortality [8%, 13% and 15%, respectively] and prostate cancers were frequent in male path_MSH2 carriers [cumulative incidence: 39.7% at 75 years]. Pancreatic, brain, biliary tract and ureter and kidney and urinary bladder cancers were associated with high mortality [83%, 66%, 58%, 27%, and 29%, respectively]. Among path_MMR carriers undergoing colonoscopy surveillance, particularly path_MSH2 carriers, more deaths followed non-colorectal Lynch syndrome cancers than colorectal cancers.Interpretation In path_MMR carriers undergoing colonoscopy surveillance, non-colorectal Lynch syndrome cancers were associated with more deaths than were colorectal cancers. Reducing deaths from non-colorectal cancers presents a key challenge in contemporary medical care in Lynch syndrome. Funding We acknowledge funding from the Norwegian Cancer Society, contract 194751-2017. Copyright (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY licensePeer reviewe
    corecore