335 research outputs found

    On Chromospheric Variations Modeling for Main-Sequence Stars of G and K Spectral Classes

    Full text link
    We present a method of chromospheric flux simulation for 13 late-type main-sequence stars. These Sun-like stars have well-determined cyclic flux variations similar to 11 yr solar activity cycle. Our flux prediction is based on chromospheric HK emission time series measurements from Mount Wilson Observatory and comparable solar data. We show that solar three - component modeling explains well the stellar observations. We find that the 10 - 20% of K - stars disc surfaces are occupied by bright active regions.Comment: 8 pages, 2 figure

    Survey of Coherent Approximately 1 Hz Waves in Mercury's Inner Magnetosphere from MESSENGER Observations

    Get PDF
    We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances

    Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion‐Bernstein waves

    Full text link
    We show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion‐Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion‐Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high‐compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel‐Kramers‐Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.Key PointsThe ion‐Bernstein (IB) mode is highly unstable to proton loss cones at MercuryThe IB mode can become highly compressional as it propagatesRay tracing of the IB mode predicts compression peaking the off equatorPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112180/1/jgra51808.pd

    Messenger Observations of Mercury's Bow Shock and Magnetopause

    Get PDF
    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury

    MESSENGER Observations of Dipolarization Events in Mercury's Magnetotail

    Get PDF
    Several series of large dipolarization events are documented from magnetic field observations in Mercury's magnetotail made by the MESSENGER spacecraft. The dipolarizations are identified by a rapid (∼1 s) increase in the northward component of the magnetic field, followed by a slower return (∼10 s) to pre-onset values. The changes in field strength during an event frequently reach 40 nT or higher, equivalent to an increase in the total magnetic field magnitude by a factor of ∼4 or more. The presence of spatially constrained dipolarizations at Mercury provides a key to understanding the magnetic substorm process in a new parameter regime: the dipolarization timescale, which is shorter than at Earth, is suspected to lead to efficient non-adiabatic heating of the plasma sheet proton population, and the high recurrence rate of the structures is similar to that frequently observed for flux ropes and traveling compression regions in Mercury's magnetotail. The relatively short lifetime of the events is attributed to the lack of steady field-aligned current systems at Mercury
    corecore