25 research outputs found
Evaluation of an Aqueous Extract from Horseradish Root ( Armoracia rusticana
Horseradish (Armoracia rusticana) is a perennial crop and its root is used in condiments. Traditionally, horseradish root is used to treat bacterial infections of the respiratory tract and urinary bladder. The antiphlogistic activity, determined in activated primary human peripheral blood mononuclear cells (PBMC), was evaluated for an aqueous extract and its subfractions, separated by HPLC. Compound analysis was done by UHPLC-QToF/MS and GC-MS. The aqueous extract concentration-dependently inhibited the anti-inflammatory response to lipopolysaccharide (LPS) in terms of TNF-α release at ≥37 μg/mL. Further, the cyclooxygenase as well as lipoxygenase pathway was blocked by the extract as demonstrated by inhibition of COX-2 protein expression and PGE2 synthesis at ≥4 μg/mL and leukotriene LTB4 release. Mechanistic studies revealed that inhibition of ERK1/2 and c-Jun activation preceded COX-2 suppression upon plant extract treatment in the presence of LPS. Chemical analysis identified target compounds with a medium polarity as relevant for the observed bioactivity. Importantly, allyl isothiocyanate, which is quite well known for its anti-inflammatory capacity and as the principal pungent constituent in horseradish roots, was not relevant for the observations. The results suggest that horseradish root exerts an antiphlogistic activity in human immune cells by regulation of the COX and LOX pathway via MAPK signalling
Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle
PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy
Short-Term Dietary Intervention with Cooked but Not Raw <em>Brassica</em> Leafy Vegetables Increases Telomerase Activity in CD8+ Lymphocytes in a Randomized Human Trial
Telomerase in T lymphocytes is dynamic and limited evidence from epidemiological studies indicates that the enzyme can be modulated in peripheral lymphocytes by dietary and lifestyle factors. The differential effect of dietary intervention on T cell subsets has not been investigated so far. Brassica vegetables are known for their multiple beneficial effects on human health, and here, the effect of a five-day short-term intervention with raw or cooked leaves of Brassica carinata on telomerase activity in CD4+ and CD8+ T cells from 22 healthy volunteers was investigated in a randomized single-blind, controlled crossover study. Blood samples were collected before and after intervention, and CD4+/CD8+ T lymphocytes were isolated. Telomerase activity was quantified using the TRAP-ELISA assay. Intervention with both preparations led to a marginal increase in telomerase activity of CD4+ cells compared to the baseline level. In CD8+ cells, a significant increase in telomerase activity (25%, p < 0.05) was seen after intervention with the cooked material. An increase in telomerase activity in CD8+ cells of healthy volunteers could be regarded as beneficial in terms of helping with the cell-mediated immune response. Whether a Brassica intervention has long-term effects on telomere extension in specific T cell subsets needs to be determined
African Nightshade (Solanum scabrum Mill.): Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.Peer Reviewe