485 research outputs found

    Structural plasticity on an accelerated analog neuromorphic hardware system

    Get PDF
    In computational neuroscience, as well as in machine learning, neuromorphic devices promise an accelerated and scalable alternative to neural network simulations. Their neural connectivity and synaptic capacity depends on their specific design choices, but is always intrinsically limited. Here, we present a strategy to achieve structural plasticity that optimizes resource allocation under these constraints by constantly rewiring the pre- and gpostsynaptic partners while keeping the neuronal fan-in constant and the connectome sparse. In particular, we implemented this algorithm on the analog neuromorphic system BrainScaleS-2. It was executed on a custom embedded digital processor located on chip, accompanying the mixed-signal substrate of spiking neurons and synapse circuits. We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology with respect to the nature of its training data, as well as its overall computational efficiency

    Emulating insect brains for neuromorphic navigation

    Full text link
    Bees display the remarkable ability to return home in a straight line after meandering excursions to their environment. Neurobiological imaging studies have revealed that this capability emerges from a path integration mechanism implemented within the insect's brain. In the present work, we emulate this neural network on the neuromorphic mixed-signal processor BrainScaleS-2 to guide bees, virtually embodied on a digital co-processor, back to their home location after randomly exploring their environment. To realize the underlying neural integrators, we introduce single-neuron spike-based short-term memory cells with axo-axonic synapses. All entities, including environment, sensory organs, brain, actuators, and the virtual body, run autonomously on a single BrainScaleS-2 microchip. The functioning network is fine-tuned for better precision and reliability through an evolution strategy. As BrainScaleS-2 emulates neural processes 1000 times faster than biology, 4800 consecutive bee journeys distributed over 320 generations occur within only half an hour on a single neuromorphic core

    Smooth(er) Stellar Mass Maps in CANDELS: Constraints on the Longevity of Clumps in High-redshift Star-forming Galaxies

    Get PDF
    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies at 0.5 < z < 1.5, and 326 star-forming galaxies at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10^10 Msun and have specific star formation rates above 1/t_H. We model the 7-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible on the inferred stellar mass distributions. Off-center clumps contribute up to ~20% to the integrated SFR, but only 7% or less to the integrated mass of all massive star-forming galaxies at z ~ 1 and z ~ 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100 - 200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.Comment: Accepted by The Astrophysical Journal, 27 pages, 1 table, 16 figure

    Local Electrical Dyssynchrony during Atrial Fibrillation: Theoretical Considerations and Initial Catheter Ablation Results

    Get PDF
    Copyright: © 2016 Kuklik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background Electrogram-based identification of the regions maintaining persistent Atrial Fibrillation (AF) is a subject of ongoing debate. Here, we explore the concept of local electrical dyssynchrony to identify AF drivers. Methods and Results Local electrical dyssynchrony was calculated using mean phase coherence. High-density epicardial mapping along with mathematical model were used to explore the link between local dyssynchrony and properties of wave conduction. High-density mapping showed a positive correlation between the dyssynchrony and number of fibrillatory waves (R2 = 0.68, p<0.001). In the mathematical model, virtual ablation at high dyssynchrony regions resulted in conduction regularization. The clinical study consisted of eighteen patients undergoing catheter ablation of persistent AF. High-density maps of left atrial (LA) were constructed using a circular mapping catheter. After pulmonary vein isolation, regions with the top 10% of the highest dyssynchrony in LA were targeted during ablation and followed with ablation of complex atrial electrograms. Catheter ablation resulted in termination during ablation at high dyssynchrony regions in 7 (41%) patients. In another 4 (24%) patients, transient organization was observed. In 6 (35%) there was no clear effect. Long-term follow-up showed 65% AF freedom at 1 year and 22% at 2 years. Conclusions Local electrical dyssynchrony provides a reasonable estimator of regional AF complexity defined as the number of fibrillatory waves. Additionally, it points to regions of dynamical instability related with action potential alternans. However, despite those characteristics, its utility in guiding catheter ablation of AF is limited suggesting other factors are responsible for AF persistence

    Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates

    Get PDF
    The effectiveness of the potent antifungal drug fluconazole is being compromised by the rise of drug-resistant fungal pathogens. While inhibition of Hsp90 or calcineurin can reverse drug resistance in Candida, such inhibitors also impair the homologous human host protein and fungal-selective chemosensitizers remain rare. The MLPCN library was screened to identify compounds that selectively reverse fluconazole resistance in a Candida albicans clinical isolate, while having no antifungal activity when administered as a single agent. A piperazinyl quinoline was identified as a new small-molecule probe (ML189) satisfying these criteria.National Institutes of Health (U.S.) (1 R03 MH086456-01

    Brain death determination in patients with veno-arterial extracorporeal membrane oxygenation: a systematic study to address the Harlequin syndrome

    Get PDF
    Purpose The Harlequin syndrome may occur in patients treated with venoarterial extracorporal membrane oxygenation (VA-ECMO), in whom blood from the left ventricle and the ECMO system supply different parts of the body with different paCO2-levels. The purpose of this study was to compare two variants of paCO2-analysis to account for the Harlequin syndrome during apnea testing (AT) in brain death (BD) determination. Materials and methods Twenty-seven patients (median age 48 years, 26–76 years; male n = 19) with VA-ECMO treatment were included who underwent BD determination. In variant 1, simultaneous arterial blood gas (ABG) samples were drawn from the right and the left radial artery. In variant 2, simultaneous ABG samples were drawn from the right radial artery and the postoxygenator ECMO circuit. Differences in paCO2-levels were analysed for both variants. Results At the start of AT, median paCO2-difference between right and left radial artery (variant 1) was 0.90 mmHg (95%-confidence intervall [CI]: 0.7–1.3 mmHg). Median paCO2-difference between right radial artery and postoxygenator ECMO circuit (variant 2) was 3.3 mmHg (95%-CI: 1.5–6.0 mmHg) and thereby significantly higher compared to variant 1 (p = 0.001). At the end of AT, paCO2-difference according to variant 1 remained unchanged with 1.1 mmHg (95%-CI: 0.9–1.8 mmHg). In contrast, paCO2-difference according to variant 2 increased to 9.9 mmHg (95%-CI: 3.5–19.2 mmHg; p = 0.002). Conclusions Simultaneous paCO2-analysis from right and left distal arterial lines is the method of choice to reduce the risk of adverse effects (e.g. severe respiratory acidosis) while performing AT in VA-ECMO patients during BD determination

    Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77

    Full text link
    The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-forming galaxies.Comment: accepted for publication in MNRA
    • …
    corecore