975 research outputs found
Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic
We perform extensive computational studies of two-dimensional static
bidisperse disk packings using two distinct packing-generation protocols. The
first involves thermally quenching equilibrated liquid configurations to zero
temperature over a range of thermal quench rates and initial packing
fractions followed by compression and decompression in small steps to reach
packing fractions at jamming onset. For the second, we seed the system
with initial configurations that promote micro- and macrophase-separated
packings followed by compression and decompression to . We find that
amorphous, isostatic packings exist over a finite range of packing fractions
from in the large-system limit,
with . In agreement with previous calculations,
we obtain for , where is the rate
above which is insensitive to rate. We further compare the structural
and mechanical properties of isostatic versus hyperstatic packings. The
structural characterizations include the contact number, bond orientational
order, and mixing ratios of the large and small particles. We find that the
isostatic packings are positionally and compositionally disordered, whereas
bond-orientational and compositional order increase with contact number for
hyperstatic packings. In addition, we calculate the static shear modulus and
normal mode frequencies of the static packings to understand the extent to
which the mechanical properties of amorphous, isostatic packings are different
from partially ordered packings. We find that the mechanical properties of the
packings change continuously as the contact number increases from isostatic to
hyperstatic.Comment: 11 pages, 15 figure
Controlled Generation of Dark Solitons with Phase Imprinting
The generation of dark solitons in Bose-Einstein condensates with phase
imprinting is studied by mapping it into the classic problem of a damped driven
pendulum. We provide simple but powerful schemes of designing the phase imprint
for various desired outcomes. We derive a formula for the number of dark
solitons generated by a given phase step, and also obtain results which explain
experimental observations.Comment: 4pages, 4 figure
Recommended from our members
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
Four upper tropospheric humidity (UTH) datasets derived from satellite sounders are evaluated to assess their consistency as part of the activities for the Global Energy and Water Exchanges (GEWEX) water vapor assessment project. The datasets include UTH computed from brightness temperature measurements of the 183.31±1 GHz channel of the Special Sensor Microwave – Humidity (SSM/T-2), Advanced Microwave Sounding Unit-B (AMSU-B), and Microwave Humidity Sounder (MHS) and from channel 12 of the High-resolution Infrared Radiation Sounder (HIRS). The four datasets are generally consistent in the interannual temporal and spatial variability of the tropics. Large positive anomalies peaked over the central equatorial Pacific region during El Niño events in the same phase with the increase of sea surface temperature (SST). Conversely, large negative anomalies were obtained during El Niño events when the tropical-domain average is taken. The weakened ascending branch of the Pacific Walker circulation in the western Pacific and the enhanced descending branches of the local Hadley circulation along the Pacific subtropics largely contributed to widespread drying areas and thus negative anomalies in the upper troposphere during El Niño events as shown in all four datasets. During a major El Niño event, UTH had higher correlations with the coincident precipitation (0.60 to 0.75) and with 200 hPa velocity potential (−0.42 to −0.64) than with SST (0.37 to 0.49). Due to differences in retrieval definitions and gridding procedures, there can be a difference of 3 %–5 % UTH between datasets on average, and larger magnitudes of anomaly values are usually observed in spatial maps of microwave UTH data. Nevertheless, the tropical-domain averaged anomalies of the datasets are close to each other with their differences being mostly less than 0.5 %, and more importantly the phases of the time series are generally consistent for variability studie
Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li
We measure a zero crossing in the scattering length of a mixture of the two
lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the
decrease in temperature and atom number arising from evaporation in a CO2 laser
trap as a function of magnetic field B. The temperature decrease and atom loss
are minimized for B=528(4) G, consistent with no evaporation. We also present
preliminary calculations using potentials that have been constrained by the
measured zero crossing and locate a broad Feshbach resonance at approximately
860 G, in agreement with previous theoretical predictions. In addition, our
theoretical model predicts a second and much narrower Feshbach resonance near
550 G.Comment: Five pages, four figure
Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas
We report the direct observation of sub-Poissonian number fluctuation for a
degenerate Bose gas confined in an optical trap. Reduction of number
fluctuations below the Poissonian limit is observed for average numbers that
range from 300 to 60 atoms.Comment: 5 pages, 4 figure
Recommended from our members
Optical signatures of silicon-vacancy spins in diamond
Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to date. Recently, this toolbox has expanded to include novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with highly desirable photonic properties. The challenge for utilizing this centre is to realize the hitherto elusive optical access to its electronic spin. Here we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. Our measurements reveal a spin-state purity approaching unity in the excited state, highlighting the potential of the centre as an efficient spin-photon quantum interface
Stability and Decay Rates of Non-Isotropic Attractive Bose-Einstein Condensates
Non-Isotropic Attractive Bose-Einstein condensates are investigated with
Newton and inverse Arnoldi methods. The stationary solutions of the
Gross-Pitaevskii equation and their linear stability are computed. Bifurcation
diagrams are calculated and used to find the condensate decay rates
corresponding to macroscopic quantum tunneling, two-three body inelastic
collisions and thermally induced collapse.
Isotropic and non-isotropic condensates are compared. The effect of
anisotropy on the bifurcation diagram and the decay rates is discussed.
Spontaneous isotropization of the condensates is found to occur. The influence
of isotropization on the decay rates is characterized near the critical point.Comment: revtex4, 11 figures, 2 tables. Submitted to Phys. Rev.
Effects of the bias enhanced nucleation hot-filament chemical-vapor deposition parameters on diamond nucleation on iridium
The effects of the bias current density and the filament-to-substrate distance on the nucleation of diamond on iridium buffer layers were investigated in a hot-filament chemical-vapor deposition (HFCVD) reactor. The nucleation density increased by several orders of magnitude with the raise of the bias current density. According to high-resolution field-emission gun scanning electron microscopy observation, diamond nuclei formed during bias-enhanced nucleation (BEN) did not show any preferred oriented growth. Moreover, the first-nearest-neighbor distance distribution was consistent with a random nucleation mechanism. This occurrence suggested that the diffusion of carbon species at the substrate surface was not the predominant mechanism taking place during BEN in the HFCVD process. This fact was attributed to the formation of a graphitic layer prior to diamond nucleation. We also observed that the reduction of the filament sample distance during BEN was helpful for diamond growth. This nucleation behavior was different from the one previously reported in the case of BEN-microwave chemical-vapor deposition experiments on iridium and has been tentatively explained by taking into account the specific properties and limitations of the HFCVD technique
- …