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Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic
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We perform extensive computational studies of two-dimensional static bidisperse disk packings
using two distinct packing-generation protocols. The first involves thermally quenching equilibrated
liquid configurations to zero temperature over a range of thermal quench rates r and initial packing
fractions followed by compression and decompression in small steps to reach packing fractions φJ at
jamming onset. For the second, we seed the system with initial configurations that promote micro-
and macrophase-separated packings followed by compression and decompression to φJ . Using these
protocols, we generate more than 104 static packings over a wide range of packing fraction, contact
number, and compositional and positional order. We find that amorphous, isostatic packings exist
over a finite range of packing fractions from φmin ≤ φJ ≤ φmax in the large-system limit, with
φmax ≈ 0.853. In agreement with previous calculations, we obtain φmin ≈ 0.84 for r > r∗, where r∗

is the rate above which φJ is insensitive to rate. We further compare the structural and mechanical
properties of isostatic versus hyperstatic packings. The structural characterizations include the
contact number, bond orientational order, and mixing ratios of the large and small particles. We
find that the isostatic packings are positionally and compositionally disordered, whereas bond-
orientational and compositional order increase with contact number for hyperstatic packings. In
addition, we calculate the static shear modulus and normal mode frequencies of the static packings
to understand the extent to which the mechanical properties of amorphous, isostatic packings are
different from partially ordered packings. We find that the mechanical properties of the packings
change continuously as the contact number increases from isostatic to hyperstatic.

PACS numbers: 83.80.Fg61.43.-j62.20.-x64.75.Gh

I. INTRODUCTION

The ability to enumerate and classify all of the me-
chanically stable (MS) packings of frictionless particles
is important for understanding glass transitions [1] in
atomic, molecular, and colloidal systems, and the struc-
tural and mechanical properties of particulate materials
such as granular media, foams, and emulsions. For exam-
ple, if all MS packings in a given system are known, one
can measure accurately the frequency with which each
MS packing occurs, and determine how the packing fre-
quencies and materials properties depend on the prepa-
ration history [2, 3]. Further, MS packing frequencies
are important for identifying the appropriate statistical
mechanical ensemble for weakly perturbed granular ma-
terials [4]. However, since the number of MS packings
grows exponentially with the number of particles [5], ex-
act enumeration of static packings is prohibitive for even
modest system sizes [6]. Thus, one of the most important
outstanding questions in the area of disordered particu-
late materials is determining how the packing-generation
protocol influences the distribution of MS packings and
their structural and mechanical properties.

Previous work has suggested that the positional order
of MS packings of frictionless spheres increases mono-
tonically with packing fraction and contact number in
dense packings [7, 8]. However, the MS packings in these
previous studies were created using monodisperse sys-
tems, which are prone to crystallization [9], and pre-
pared using the Lubachevsky-Stillinger compression al-

gorithm [10], which is a thermalized packing-generation
protocol. In addition, these prior studies did not dis-
tinguish the distribution of isostatic MS packings (in
which the number of degrees of freedom matches the
number of constraints [11]) from the distribution of hy-
perstatic packings (with more contacts than degrees of
freedom). Later work characterized bidisperse systems,
which are less prone to crystallization, but focused on
microphase-separated states, not amorphous, isostatic
packings [12]. However, recent studies on systems com-
posed of 3D monodisperse, frictionless, spherical parti-
cles have pointed out that amorphous, isostatic packings
can exist over a finite range of packing fraction in the
large-system limit, with no correlation between positional
order and packing fraction [13, 14]. Moreover, simula-
tions [15] and experiments [16] on two-dimensional sys-
tems also suggest a finite range of jamming onsets rather
than a single packing fraction in the large system limit.

Further, the body of work on jammed particulate sys-
tems has emphasized the concept of point J, i.e. that
there is a single packing fraction at which jamming oc-
curs in the large system limit [17, 18]. Since amorphous,
isostatic packings can exist over a finite range of packing
fractions, the onset of jamming should not be classified
as a point in the jamming phase diagram, but rather as
a region of finite extent. It has also been argued that
the wide distribution of packing fractions at which the
onset of jamming occurs in small periodic systems [17] is
related to the finite range of packing fractions over which
amorphous, isostatic packings occur in the large system
limit [19]. However, it has not been proved that these
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two effects are directly connected.

A number of overarching questions related to the con-
nection between positional order, isostaticity, and mate-
rial properties of static packings remain open. For ex-
ample, can isostatic or nearly isostatic packings possess
significant positional order and if so, what are the fun-
damental differences in the normal modes and mechan-
ical properties between those that do and do not pos-
sess significant positional order? This question is par-
ticularly important since recent studies have emphasized
that amorphous, isostatic packings possess an excess of
low-frequency normal modes [20, 21] over that for har-
monic, ordered solids.

In addition, previous work has drawn a strong con-
trast between amorphous packings and configurations
with crystalline order [22]. However, how different are
the structural and mechanical properties of amorphous
versus partially ordered particulate systems? For exam-
ple, it is possible that the amorphous regions in the in-
terstices between ordered domains in partially crystalline
materials dominate the structural and mechanical prop-
erties, in which case their properties would be similar to
amorphous packings. At the very least, one would as-
sume that there is not a strong difference between the
mechanical properties of isostatic and only slightly hy-
perstatic packings that possess significant positional or-
der.

In this article, we describe extensive computer simu-
lations of collections of frictionless, bidisperse disks with
short-range repulsive interactions to address two impor-
tant, open questions: 1. What is the range of packing
fractions over which amorphous, isostatic static packings
occur with similar structural and mechanical properties,
and 2. How do the structural and mechanical properties
of static packings change with the deviation in the con-
tact number at jamming onset from the isostatic value,
zJ−ziso [23]? Using two distinct packing-generation pro-
tocols, we construct scatter plots for more than 104 static
packings characterized by the contact number, packing
fraction, measures of positional order, and mechanical
properties. The first protocol involves thermally quench-
ing equilibrated liquid configurations to zero temperature
over a range of thermal quench rates r followed by com-
pression and decompression in small steps to reach pack-
ing fractions φJ at jamming onset. For the second, we
seed the system with initial configurations that promote
micro- and macrophase-separated packings followed by
compression and decompression to φJ .

Our main results are fourfold: 1. Isostatic, amorphous
packings exist over a finite range of packing fraction from
φmin to φmax in the large system limit, with similar struc-
tural and mechanical properties. 2. In agreement with
previous calculations, we obtain φmin ≈ 0.84 for r > r∗,
where r∗ is the rate above which φJ is insensitive to rate.
In contrast, φmax depends sensitively on quench rate, sys-
tem size, and boundary conditions. 3) The amorphous,
isostatic packings coexist with an abundance of hyper-
static, microphase- and macrophase-separated packings.

4) When considering the full ensemble of static friction-
less packings, the packings possess structural and me-
chanical properties that span a continuous range from
amorphous to partially ordered to ordered in contrast to
the results and interpretations of recent studies [24, 25].
The remainder of the manuscript will be organized as

follows. In Sec. II, we describe the computational system
we consider and the two protocols we employ to generate
static frictionless disk packings. In Sec. III, we present
our results, which include characterizations of the struc-
tural (packing fraction, contact number, and several or-
der parameters to detect positional and compositional
order) and mechanical (shear modulus and eigenvalues
of the dynamical matrix [3]) properties of more than
104 static packings and comparisons of these properties
for isostatic and hyperstatic configurations. Finally, in
Sec. IV, we provide our conclusions and promising future
research directions.

II. PACKING-GENERATION PROTOCOLS

We focus on well-characterized two-dimensional sys-
tems composed of N bidisperse disks (50-50 by num-
ber), each of mass m, with diameter ratio d = σl/σs =
1.4 [12, 17, 26], within square, periodic simulation cells
with side length L. We consider frictionless particles that
interact through the finite-range, purely repulsive spring
potential. The total potential energy per particle is given
by

V =
ǫ

2N

∑

i>j

(

1− rij
σij

)2

Θ

(

1− rij
σij

)

, (1)

where rij is the center-to-center separation between disks
i and j, ǫ is the characteristic energy scale of the interac-
tion, Θ(x) is the Heaviside function, and σij = (σi+σj)/2
is the average diameter. We simulated a range of system
sizes from N = 256 to 8192 particles to assess finite size
effects. Energy, length, and time scales are measured in
units of ǫ, σs, and σs

√

m/ǫ, respectively.
The packing fraction φJ at which jamming occurs and

the structural and mechanical properties of static pack-
ings can depend strongly on the packing-generation pro-
tocol employed. Our goal is to generate static frictionless
MS packings that span the range of contact numbers from
the isostatic value ziso = 4 to the hexagonal crystal value
zxtal = 6 and the range of positional order from amor-
phous to phase-separated and from partially crystalline
to crystalline states. To accomplish this, we investigate
two distinct classes of packing-generation protocols: 1)
thermal quenching from liquid initial conditions coupled
with compression and decompression steps, which typ-
ically generates amorphous configurations and 2) com-
pression and decompression steps from initial conditions
that promote micro- or macrophase separation [27].
Protocol 1: Thermal quenching from liquid initial con-

ditions In this algorithm, we prepare equilibrated, liquid
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configurations at high temperature T0 = 10−3 and in
molecular dynamics (MD) simulations quench them to a
very low final temperature Tf = 10−16 ≃ 0 at fixed pack-

ing fraction 0.8 ≤ φi < φxtal = π/2
√
3 [28] over a time

interval t by rescaling the particle velocities so that the
kinetic temperature T = N−1

∑

imv
2

i /2 obeys

T (t) = T0e
−rt, (2)

where r is the thermal quench rate, which is varied over
five orders of magnitude 10−5 ≤ r ≤ 1. We generated 50
equilibrated, independent liquid configurations at T0 at
each φi by writing out configurations every 10τ , where τ
is a decay time obtained from the self-intermediate scat-
tering function at wavenumbers corresponding to the first
peak in the structure factor [29].
After reaching a local potential energy minimum at

each initial packing fraction φi and thermal quench rate
r, we input the configurations into an ‘athermal’ algo-
rithm (‘packing finder’) that searches for the nearest
static packing in configuration space with infinitesimal
particle overlaps. The algorithm has been described in
detail in previous work [3]. Briefly, we successively in-
crease or decrease the diameters of the grains (while
maintaining the diameter ratio d), with each compres-
sion or decompression step followed by conjugate gra-
dient minimization of V . The system is decompressed
when the total potential energy per particle at a local
minimum is nonzero, i.e. there are finite particle over-
laps. If the potential energy of the system is zero and
gaps exist between particles, the system is compressed.
The increment by which the packing fraction is changed
at each compression or decompression step is gradually
decreased. Numerical details of the algorithm are the
same as in Ref. [3]. When this algorithm terminates,
we obtain a static packing defined by the particle po-
sitions {~r1, ~r2, . . . , ~rN} and packing fraction φJ . Since
we use an energy tolerance (per particle) Vtol/ǫ = 10−16

for the termination of the energy minimization and com-
pression/decompression scheme in the packing finder, the
positions and packing fraction at jamming are extremely
accurate with errors at one part in 108.
Protocol 2: Compression and decompression steps from

initial conditions that promote order We will see below
in Sec. III that Protocol 1 produces amorphous, isostatic
packings. Thus, we seek an algorithm that will gener-
ate static packings with variable positional and compo-
sitional order. To bias the system toward micro- and
macrophase-separated configurations, we seed the pack-
ing finder with particular sets of initial conditions. We
first divided the unit cell into s × s equal-sized parti-
tions, where s is an even integer that ranged from 2 to 26,
and placed approximatelyN/s2 large or small particles in
alternating partitions to create a checkerboard-like pat-
tern. The particles were placed randomly in each parti-
tion. The initial configuration is then input into the pack-
ing finder to yield a static packing. In the large s limit, we
expect amorphous static packings, while at intermediate
and small s, we expect micro- and macrophase-separated
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FIG. 1: Average packing fraction 〈φJ 〉 obtained from Proto-
col 1 as a function of the negative logarithm of the thermal
quench rate r for N = 1024. Data points at each rate repre-
sent an average over typically 300 static, amorphous packings.
The dashed line shows the scaling 〈φJ 〉 ∼ [log

10
(r − r∗)]µ,

where µ ∼ 0.5 and r∗ ≈ 0.03 is the thermal quench rate
above which 〈φJ 〉 ≈ 0.841 is independent of r.

packings. To generate static packings near φxtal we also
divided the unit cell into two partitions and placed the
large (small) particles on a hexagonal lattice in a region
with area AL = d2/(1 + d2) (1 − AL) and then applied
the packing finder.

III. STRUCTURAL AND MECHANICAL

PROPERTIES

After generating static packings using the two packing-
generation protocols described above, we contrast them
by calculating several structural and mechanical proper-
ties. The structural characterizations include the pack-
ing fraction, contact number, and compositional and po-
sitional order parameters. For the packing fraction at
jamming onset, we calculate

φJ =
Nπ

8

(σs
L

)2
(

1 + d2
)

(3)

including all N particles. For the contact number at
jamming, we sum up all overlapping pairs (rij ≤ σij) of
particles, zJ = Nc/N

′, where N ′ = N − Nr, Nr is the
number of rattler particles with fewer than three con-
tacts, and Nc only includes overlapping pairs among the
N ′ particles within the ‘true’ contact network. It is cru-
cial to perform an error analysis on the contact number
zJ , which is described in Appendix A.
Packing Fraction We show results for the average

packing fraction 〈φJ 〉 versus thermal quench rate r over
five orders of magnitude obtained from Protocol 1 in
Fig. 1. For large rates r > r∗ ≈ 0.03, the av-
erage packing fraction 〈φJ 〉 → 0.841 is independent
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FIG. 2: Scatter plot of the contact number zJ versus the
packing fraction at jamming onset φJ . The open circles indi-
cate static packings that were generated using Protocol 1 for
N = 1024, while all other symbols indicate static packings
generated using Protocol 2. The open squares, diamonds,
and triangles correspond to N = 1024, 2048, and 4096, re-
spectively, for all partitions s and systems with two parti-
tions and random particle placements. The filled squares, dia-
monds, upward triangles, and downward triangles correspond
to N = 1024, 2048, 4096, and 8192, respectively, for the sys-
tems with two partitions and initial crystal lattice positions.
The black cross indicates the values zJ = 6 and φJ = π/2

√
3

for the hexagonal crystal. The labels (a)-(d) correspond to
the images in Fig. 3. The inset shows the system-size de-
pendence for systems with two partitions and random initial
positions at N = 256 (leftward triangles), 1024 (squares), and
4096 (upward triangles).

of rate, which agrees with studies that employ ather-
mal compression/decompression packing-generation al-
gorithms [2, 17]. For r < r∗, 〈φJ 〉 increases approx-
imately as [log10(r − r∗)]0.5 with decreasing rate. We
emphasize that all packings used to present the data in
Fig. 1 are amorphous and isostatic. Since 〈φJ 〉 increases
so slowly, it is not possible to approach φxtal using pro-
tocol 1. Using an extrapolation, we estimate that rates
below 10−45 are required to reach φxtal, and thus we em-
ployed Protocol 2, not 1, to generate compositionally and
positionally ordered packings.

Contact Number In Fig. 2, we display a scatter plot
of the contact number zJ versus φJ for all static packings
(where the contact number is insensitive to the definition
of ‘contact’) generated using Protocols 1 and 2. (See Ap-
pendix A for a discussion of the sensitivity of the contact
number on the definition of contacting particles.) Fig. 2
shows several compelling features. First, nearly all of the
static packings obtained from Protocol 1 (open circles)
are isostatic with zJ = 4, but they occur over a range of
packing fractions φmin ≤ φJ ≤ φmax, where φmin = 0.837
and φmax = 0.853. As shown in Appendix A φmax is

FIG. 3: Images of representative static packings from the
scatter plot in Fig. 2 with (a) φJ = 0.837, zJ = 3.99, (b) φJ =
0.853, zJ = 4.00, (c) φJ = 0.846, zJ = 4.04, (d) φJ = 0.860,
zJ = 4.41, and (e) φJ = 0.892, zJ ≃ 4.1. (See Appendix A.)
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FIG. 4: Scatter plot of the fraction of contacts between two
large fll or two small particles fss versus packing fraction φJ

for all static packings from both protocols. The diamonds
(circles) and triangles (squares) display data from Protocol 1
(2) for fll and fss, respectively.

likely only a lower bound for the largest packing fraction
at which isostatic packings can occur in these systems.
Second, we find a cluster of data points for Protocol 2,
for which the average zJ is strongly correlated—varying
roughly linearly—with φJ . The cluster originates near
φJ ≈ 0.84, zJ = ziso = 4. In the inset to Fig. 2, we show
that the width of the cluster of data points from Protocol
2 narrows with increasing system size, but the approxi-
mate linear relationship between the average zJ and φJ is
maintained. Images of five representative packings from
the scatter plot in Fig. 2 are displayed in Fig. 3.

Compositional Order We now describe measurements
of the compositional and positional order for static pack-
ings. For the compositional order, we quantify the
fraction of overlapping pairs (rij ≤ σij) that involve
two small fss or large fll particles. A scatter plot
of fll and fss versus φJ for static packings generated
from both protocols is shown in Fig. 4. The packings
from Protocol 1 show no signs of phase separation with
fss + fll ≈ fsl ≈ 0.5 for all packings. In contrast, Pro-
tocol 2 generates static packings with a range of compo-
sitional order as shown in Fig. 3 (c)-(e). For example,
at the largest φJ , the system displays macrophase sep-
aration with fss + fll ≈ 1 and fsl ≈ 0. We find simi-
lar results when we define contacting pairs as those with
rij ≤ rminσij , where rmin is set by the first minimum in
g(r).

Bond Orientational Order To quantify positional or-
der, we calculate the bond orientational order parame-
ter ψ6, which measures the hexagonal registry of near-
est neighbors [30]. ψ6 can be calculated ‘locally’, which
does not consider phase information, or ‘globally’, which
allows phase cancellations. A polycrystal will yield a rel-
atively large value for the local bond orientational order
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FIG. 5: Scatter plot of the (a) global and (b) local bond
orientational order parameters, ψg

6
and ψl

6, versus packing
fraction for static packings from protocol 1 (squares) and 2
(circles).

parameter ψl
6, even though the global order parameter

ψg
6
∼ 1/

√
Nd, where Nd is the number of polycrystalline

domains. Eqs. (4) (global) and (5) (local) provide ex-
pressions for the bond orientational order parameters in
2D.

ψg
6

=
1

N

∣

∣

∣

∣

∣

∣

N
∑

i=1

1

ni

ni
∑

j=1

e6ıθij

∣

∣

∣

∣

∣

∣

(4)

ψl
6 =

1

N

N
∑

i=1

1

ni

∣

∣

∣

∣

∣

∣

ni
∑

j=1

e6ıθij

∣

∣

∣

∣

∣

∣

, (5)

where θij is the angle between a central particle i and
neighbors j and ni denotes the number of nearest neigh-
bors of i. Two particles are deemed nearest neighbors if
their center-to-center separation rij < rminσij .
The results for the global and local bond orientational

parameters ψg
6
and ψl

6
are shown in Fig. 5. The static
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FIG. 6: Density D(ω) of normal mode frequencies ω for
N = 1024 bidisperse frictionless disk packings obtained us-
ing Protocols 1 and 2 as a function of the contact number
at jamming onset for zJ ≃ 4.0 (black), 4.0 ≤ zJ ≤ 4.1
(red), 4.1 ≤ zJ ≤ 4.2 (green), 4.3 ≤ zJ ≤ 4.4 (blue), and
4.5 ≤ zJ ≤ 4.6 (violet). The inset shows the same data ex-
cept that it focuses on low frequencies ω < 1 and includes
power-law fits to D(ω) ∼ ωα as dashed lines.

0 0.5 1 1.5 2 2.5
ω

0

0.4

0.8

1.2

1.6

2

D
(ω
)

-2 -1.5 -1 -0.5 0
log

10
ω

-2

-1.5

-1

-0.5

lo
g

1
0
 D

(ω
)

FIG. 7: Density D(ω) of normal mode frequencies ω for N =
1024 monodisperse frictionless disk packings obtained using
Protocol 1 as a function of the contact number at jamming
onset for 4.1 ≤ zJ ≤ 4.2 (green), 4.5 ≤ zJ ≤ 4.6 (violet),
4.9 ≤ zJ ≤ 5.0 (cyan), 5.4 ≤ zJ ≤ 5.5 (magenta), and zJ ≃
6.0 (orange). The inset shows the same data except that it
focuses on low frequencies ω < 1 and includes power-law fits
to D(ω) ∼ ωα as dashed lines.

(a) (b)

FIG. 8: Eigenvectors corresponding to the modes with fre-
quencies near the (a) first and (b) second peaks in the den-
sity of states D(ω) for monodisperse packings with zJ ≃ 6
and φJ ≃ φxtal for N = 256. The size of the eigenvector com-
ponent for each particle is proportional to the length of the
vector associated with each particle.

packings obtained from Protocol 1 possess only local
bond orientational order with ψl

6
≈ 0.55 as found in dense

liquids [30], and ψg
6
∼ 1/

√
N . Further, there is no cor-

relation between the packing fraction φJ and global or
local bond orientational order. In contrast, for the phase-
separated and partially crystalline packings from Proto-
col 2, we find that there is a strong positive correlation
between ψl

6
and φJ and a somewhat weaker correlation

between ψg
6
and φJ .

The static packings from Protocols 1 and 2 have differ-
ent structural properties. Those from 1 are amorphous
and possess similar structural properties even though
they exist over a range of packing fraction. In con-
trast, there is a positive correlation between composi-
tional and positional order and packing fraction for the
phase-separated and partially crystalline packings from
Protocol 2. We will now describe the mechanical prop-
erties of the static packings including the spectrum of
normal modes and static shear modulus as a function of
contact number and order.

Spectrum of Normal Modes The spectrum of nor-
mal modes provides significant insight into the structural
and mechanical properties of mechanically stable pack-
ings [17]. For example, there is evidence that the low-
frequency region of the spectrum controls the static shear
response of jammed packings [31]. To calculate the spec-
trum, we diagonalize the dynamical matrix of all possible
second derivatives with respect to particle positions eval-
uated at positions of the static packing—assuming that
no existing contacts break and no new contacts form [32].
This yields 2N ′ − 2 nontrivial eigenvalues ei after ac-
counting for translational invariance. We consider here
only mechanically stable packings, and thus all 2N ′ − 2
of the eigenvalues are nonzero [33].

The density D(ω) of normal mode frequencies ωi =
√

ei/N , or density of states (DOS), is given by D(ω) =
(N(ω + δω) − N(ω))/δω, where N(ω) is the number of
modes with frequency less than or equal to ω. The den-
sity of states D(ω) for packings of bidisperse frictionless
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FIG. 9: Power-law exponent α for the scaling of the density
of states with frequency in the limit ω → 0 (D(ω) ∼ ωα) as a
function of contact number at jamming onset zJ for bidisperse
(circles) and monodisperse (squares) packings. (The error
bars indicate the error in α from least-squares analysis.) The
dashed line is a fit to Eq. 7 (with a = 0.17), which interpolates
the data between the limiting values α = 0 at zJ = ziso = 4
and α = 1 (Debye behavior) at zJ = zxtal = 6. The solid line
is Eq. 7 with a = 0.

disks is shown in Fig. 6 as a function of the contact num-
ber at jamming onset zJ . As in previous studies [17], we
find that for isostatic systems with zJ ≃ 4, D(ω) pos-
sesses a nearly constant regime at low frequencies, which
signals an abundance of low-frequency modes compared
to ideal Debye behavior (where D(ω) ∼ ω as ω → 0)
for ideal 2D harmonic solids. For the micro- and macro-
phase separated bidisperse packings generated using Pro-
tocol 2 with zJ & 4.1, the density of states develops
two other interesting features. First, D(ω) develops two
strong peaks near ω ≃ 1.0 and 1.6 instead of a single
broad peak centered near ω ≈ 1.4 for isostatic amor-
phous systems. (We will see below that these peaks are
associated with crystallization.) Second, we observe that
as zJ increases and the packings become hyperstatic, the
weight in D(ω) at low frequency (ω . 0.3) decreases. As
shown in the inset to Fig. 6, the density of states scales
as a power-law

D(ω) ∼ ωα (6)

in the limit ω → 0 with a scaling exponent α that
varies continuously with contact number zJ as shown
in Fig. 9. (See Appendix B for a discussion of the
system-size dependence of the exponent α.) Note, how-
ever, that the plateau in the density of states remains
largely unchanged in the intermediate frequency regime
0.3 ≤ ω . 1 over a wide range of zJ , which implies that
some of the remarkable features of jamming in isostatic
systems also hold for hyperstatic systems.
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FIG. 10: Static shear modulus G versus the deviation in
packing fraction from the jamming onset ∆φ = φ − φJ for
static packings at 〈zJ〉 = 4.0 (circles), 4.15 (diamonds), 4.35
(left triangles), and 4.55 (right triangles). The long dashed
(dot-dashed) line has slope 0.5 (0.4). The inset shows the
power-law scaling exponent β for the static shear modulus
(G ∼ (∆φ)β) versus the contact number zJ at jamming.

To test the generality of the results for the density of
states, we also calculatedD(ω) for monodisperse friction-
less disk packings generated using Protocol 1 as shown
in Fig. 7. The density of states for monodisperse systems
displays similar features to that for bidisperse systems. 1.
A plateau in D(ω) exists at low to intermediate frequen-
cies for nearly isostatic systems. 2. Strong distinct peaks
are located near ω ≃ 1.4 and 2.25 for hyperstatic pack-
ings. Eigenvectors that correspond to the two peak fre-
quencies are visualized in Fig. 8. 3. A power-law regime
D(ω) ∼ ωα develops in the ω → 0 limit for hyperstatic
packings. The exponent α varies continuously with zJ
with a similar functional dependence to that for bidis-
perse systems as shown in Fig. 9. A notable difference
between bidisperse and monodisperse systems is that a
continuous power-law regime in D(ω) persists to higher
frequencies (ω ∼ 1) for monodisperse compared to bidis-
perse systems.
The dependence of the scaling exponent α on zJ is

displayed for all bidisperse and monodisperse packings
(binned by zJ) in Fig. 9. We find that α increases mono-
tonically with zJ and use the suggestive empirical form

α = (d− 1)
zJ − ziso
zxtal − ziso

+ a(zJ − ziso)(zJ − zxtal), (7)

where a is a fitting parameter, to describe the data be-
tween the limiting values α = 0 at zJ = ziso and α = d−1
(Debye behavior) at zJ = zxtal. The continuous increase
in α from 0 to 1 as the contact number increases sug-
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FIG. 11: The contact number zJ as a function of a, where
the condition rij ≤ (1 + a)σij determines whether particles
i and j are in contact. The packings shown are N = 1024,
φJ = 0.837 (circles); N = 1014, φJ = 0.892 (squares); and
N = 2390, φJ = 0.897 (diamonds).

gests a different scenario for the behavior of the jamming
transition as a function of zJ and positional order com-
pared to the first-order-like transition found as the sys-
tem compacts above random close packing in simulations
of frictional granular materials [25].
Static Shear Modulus To measure the static linear

shear modulus G, we slightly deform the system by ap-
plying an infinitesimal simple shear strain γ (along the
x-direction with gradient in the y-direction), allowing the
system to relax via energy minimization at fixed strain,
and then measuring the resulting shear stress response,
G = dΣxy/dγ. In Fig. 10, we show the shear modulus
versus the amount of compression ∆φ = φ−φJ for bidis-
perse packings obtained from Protocols 1 and 2 at several
values of zJ . We find generally that in the limit ∆φ→ 0
the static shear modulus scales as a power-law with ∆φ:

G = G0(∆φ)
β , (8)

where the scaling exponent β (and prefactor G0) depend
on zJ . As shown in Fig. 10, β decreases steadily from 0.5
to 0.4 as the contact number zJ at jamming increases.
Note that β = 0.5 for zJ = ziso was obtained in previous
work on isostatic packings [17]. The results in Fig. 10
suggest that the critical behavior (e.g. power-law scaling
of the shear modulus) found in jammed isostatic systems
persists when the jamming onset is hyperstatic. Further
studies are required to determine whether the scaling ex-
ponent for the static shear modulus can be varied over
the full range from 0.5 to 0.

IV. CONCLUSIONS

Using computer simulations, we generated a large li-
brary of mechanically stable packings of bidisperse, fric-
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FIG. 12: Contact number zJ versus packing fraction φJ for
the same data in Fig. 2 and an additional set of packings
obtained from thermalizing the configurations in Fig. 2 with
φJ > 0.86 and then identifying the nearest packing. The
variation in zJ increases with φJ .

tionless disks that span a wide range of contact number
from zJ = ziso = 4 to zxtal = 6 and packing fraction at
jamming from φJ ∼ 0.84 to near φxtal. We find that there
is an amorphous, isostatic branch of packings that spans
a finite range in packing fraction in the large-system
limit. Over this range of packing fraction, these packings
are amorphous with no correlation between bond orien-
tational order or compositional order and φJ . We also
find a branch of phase-separated and partially crystalline
packings for which the compositional and positional or-
der increase with φJ . In addition, we characterize the
mechanical properties of the static packings by measur-
ing the spectrum of normal modes and the static shear
modulus. We find that the mechanical properties of the
packings vary continuously as the contact number and
structural and compositional order at jamming onset in-
crease from their isostatic values. In particular, we find
that the static shear modulus scales as a power-law in the
amount of compression, G ∼ (∆φ)β , and that the low-
frequency density of states scales as a power-law in fre-
quency, D(ω) ∼ ωα, and both α and β vary continuously
with contact number at jamming onset. These findings
emphasize that jamming behavior in systems with purely
repulsive contact potentials occurs over a range of con-
tact numbers, not just near zJ = ziso [34–36]. In future
studies, we will investigate the relationship between the
scaling exponents α and β, which is likely an important
feature of jamming in hyperstatic systems.
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Appendix A: Error analysis of contact number

In this appendix, we study how sensitive the contact
number zJ is to the definition of whether two particles are
in contact. In Fig. 11, we show zJ versus log

10
a where

two disks i and j are considered in contact (or overlap-
ping) if rij ≤ (1 + a)σij for three representative config-
urations: N = 1024, φJ = 0.837 (circles); N = 1014,
φJ = 0.892 (squares); and N = 2390, φJ = 0.897 (dia-
monds). We see that the contact number is well-defined
for amorphous configurations at low packing fractions,
i.e. the contact number is constant over a wide range of
a that determines whether two particles are in contact. In
contrast, for packings with large φJ and significant order
as shown in Fig. 3 (e), the contact number varies contin-
uously with a down to the numerical precision of the par-
ticle positions in the simulations (amin ∼ 10−8). Thus,
at the current numerical precision of the simulations it
is difficult to determine zJ accurately for the partially
ordered and ordered configurations. To test the robust-
ness of the contact numbers, we also added weak thermal
fluctuations to the packings with φJ > 0.855 in Fig. 2 for
times significantly shorter than the structural relaxation
time, and then found the nearest static packing. This
data, shown by the small filled symbols in Fig. 12, pos-
sess surprisingly small contact numbers and begin to fill
in the region at large φJ and small zJ . As a result, we
only include configurations in Fig. 2 that possess plateaus
in zJ versus a over a range amin ≤ a ≤ amax of at least
two orders of magnitude.

Appendix B: Robustness of the Density of States

In this appendix, we test the robustness of our mea-
surements of the the density of states D(ω) by (1) study-
ing the system-size dependence of the accumulated fre-
quency distribution N(ω) and (2) comparing D(ω) for
hyperstatic packings at jamming onset with contact num-
ber zJ to that for overcompressed packings at the same
contact number z = zJ .
To eliminate noise from numerical differentiation,

we calculate the accumulated distribution N(ω) =

∫ ω

0
D(ω′)dω′ (number of modes with frequency less than

or equal to ω). For reference, we first show N(ω) for
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FIG. 13: NumberN(ω) of normal modes of the dynamical ma-
trix with frequency less than or equal to ω for monodisperse
packings at jamming onset with zJ ≃ 6 and φJ ≃ φxtal and
N = 16 (circles), 64 (squares), 256 (diamonds), 1024 (upward
triangles), 2304 (leftward triangles), and 6400 (downward tri-
angles). The solid line has slope 2.

monodisperse packings at jamming onset with zJ ≃ 6
and φJ ≃ φxtal as a function of system size for N = 16 to
6400. The crystalline systems show robust Debye power-
law scaling N(ω) ∼ ω2 at low frequency for all system
sizes. N(ω) for bidisperse packings at jamming onset is
shown in Fig. 14 for 4.4 ≤ zJ ≤ 4.5 as a function of
system size. N(ω) displays a power-law scaling with an
exponent that approaches 1 + α = 1.16 > 1 in the large-
system limit. Similar robust scaling exponents are found
for all zJ .

Distinctive features of the density of states D(ω) for
hyperstatic bidisperse packings at jamming onset are the
power-law scaling ofD(ω) ∼ ωα at the lowest frequencies,
where α varies continuously with zJ , and the persistence
of the plateau in D(ω) at intermediate frequencies over a
range of zJ . Do highly compressed packings display these
same features? In Fig. 15, we compare D(ω) for hyper-
static packings at jamming onset with 4.4 ≤ zJ ≤ 4.5
and overcompressed packings in the same range of con-
tact number z ∼ zJ . For the overcompressed packings,
we find that D(ω) ∼ ωα, with α = 1, while α ≈ 0.16
at the lowest frequencies with a crossover to a plateau
at intermediate frequencies for the hyperstatic packings
at jamming onset. Thus, hyperstatic packings at jam-
ming onset possess significantly more low-frequency nor-
mal modes than overcompressed systems at the same con-
tact number as shown in the inset to Fig. 15.
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FIG. 14: Number N(ω) of normal modes of the dynamical
matrix with frequency less than or equal to ω for bidisperse
packings at jamming onset generated using Protocol 2 with
4.4 ≤ zJ ≤ 4.5 and N = 512 (circles), 1024 (squares), 2048
(diamonds), and 4096 (triangles). The solid (dashed) line has
slope 1.16 (1).
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FIG. 15: The density of normal modes D(ω) with frequency
ω for bidisperse packings at jamming onset generated using
Protocol 2 with 4.4 ≤ zJ ≤ 4.5 (blue line) and overcompressed
packings with contact number z in the same range (red line).
The dashed lines in the inset have slope 0.16 and 1.
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