41 research outputs found

    Climate and structure of the 8.2 ka event reconstructed from three speleothems from Germany

    Full text link
    The most pronounced climate anomaly of the Holocene was the 8.2 ka cooling event. We present new 230Th/U-ages as well as high-resolution stable isotope and trace element data from three stalagmitesfrom two different cave systems in Germany, which provide important information about the structure and climate variability of the 8.2 ka event in central Europe. In all three speleothems, the 8.2 ka event is clearly recorded as a pronounced negative excursion of the {\delta}18O values and can be divided into a 'whole event' and a 'central event'. All stalagmites show a similar structure of the event with a short negative excursion prior to the 'central event', which marks the beginning of the 'whole event'. The timing and duration of the 8.2.ka event are different for the individual records, which may, however, be related to dating uncertainties. Whereas stalagmite Bu4 from Bunker Cave also shows a negative anomaly in the {\delta}13C values and Mg content during the event, the two speleothems from the Herbstlabyrinth cave system do not show distinct peaks in the other proxies. This may suggest that the speleothem {\delta}18O values recorded in the three stalagmites do not primarily reflect climate change at the cave site, but rather large-scale changes in the North Atlantic. This is supported by comparison with climate modelling data, which suggest that the negative peak in the speleothem {\delta}18O values is mainly due to lower {\delta}18O values of precipitation above the cave and that temperature only played a minor role. Alternatively, the other proxies may not be as sensitive as {\delta}18O values to record this centennial-scale cooling event. This may particularly be the case for speleothem {\delta}13C values as suggested by comparison with a climate modelling study simulating vegetation changes in Europe during the 8.2 ka event. ..

    The magnesium isotope record of cave carbonate archives

    Get PDF
    Here we explore the potential of magnesium (δ<sup>26</sup>Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ<sup>26</sup>Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ<sup>26</sup>Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ<sup>26</sup>Mg: −3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ<sup>26</sup>Mg: −4.01 ± 0.07‰; BU 4 mean δ<sup>26</sup>Mg: −4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ<sup>26</sup>Mg values of the Austrian and two δ<sup>26</sup>Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments

    Solenosmilia variabilis-bearing cold-water coral mounds off Brazil

    Get PDF
    Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of < 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short-term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water-mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation

    A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean

    Get PDF
    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve this contradiction by complementing SST data based on planktic foraminiferal abundances with surface salinity changes using hydrogen isotopic compositions of alkenones in a core from the central Nordic Seas. The data indicate the prevalence of a relatively cold, low-salinity, surface water layer in the Nordic Seas during most of MIS 11. In spite of the low-density surface layer, which was kept buoyant by continuous melting of surrounding glaciers, warmer Atlantic water was still propagating northward at the subsurface thus maintaining meridional overturning circulation. This study can help to better constrain the impact of continuous melting of Greenland and Arctic ice on high-latitude ocean circulation and climate

    The influences of hydrology on the radiogenic and stable carbon isotope composition of cave drip water, Grotta di Ernesto (Italy)

    No full text
    14C and δ13C values of C-containing species in cave drip waters are mainly controlled by the C isotope composition of karst rock and soil air, as well as by soil carbon dynamics, in particular the amount of soil CO2 in the unsaturated soil zone and the process of calcite dissolution. Here, we investigate soil carbon dynamics by analyzing the 14C activity and δ13C values of C dissolved in cave drip water. Monthly over a 2-yr period, we collected drip water from 2 drip sites, one fast and one relatively slow, within the shallow Grotta di Ernesto Cave (NE Italy). The 14C data reveal a pronounced annual cycle. In contrast, the δ13C values do not show an annual pattern and only small interannual variability compared to the δ13C values of soil waters. The annual 14C drip-water cycle is a function of drip-rate variability, soil moisture, and ultimately hydrology
    corecore