10 research outputs found

    Etude de solutions micellaires rhéo-épaississantes (du microscopique au macroscopique)

    No full text
    STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Towards a Rational Morphology Control of Frozen Copolymer Aggregates

    No full text
    Kinetically frozen copolymer micelles are commonly prepared by confining amphiphilic block copolymers in the evaporating dispersed phase of oil-in-water emulsions. We revisit the mechanisms of this process by examining its successive steps separately: the formation of the solvent/water interface, the emulsification, the solvent evaporation and the formation of aggregates. We bring into evidence that: (i) spontaneous water-in-solvent emulsification, i.e., the formation of a double emulsion, is a necessary step for the subsequent assembly of the copolymers into kinetically frozen aggregates with certain morphologies far from equilibrium. (ii) Equilibration of the copolymer conformation at the solvent–water interfaces is a relatively slow process that can be outpaced, or even quenched before completion, by fast solvent evaporation rates. (iii) Rather than being dictated by the packing parameter at equilibrium, the morphology of the aggregates is determined by the effective copolymer conformation at the solvent–water interface when they form. (iv) Ultra-long worm-like micelles do not form by a direct digitation of the dispersed oil phase into the water continuous phase but through the inversion of the double emulsion. From these findings, we design a simple setup that allows us to control the morphology of the frozen aggregates obtained from a given copolymer composition by simply tuning the solvent evaporation rate.ChemE/Advanced Soft Matte

    Fast and efficient shear-force assisted production of covalently functionalized oxide nanosheets

    No full text
    International audienceHypothesisWhile controlled and efficient exfoliation of layered oxides often remains a time consuming challenge, the surface modification of inorganic nanosheets is of outmost importance for future applications. The functionalization of the bulk material prior to exfoliation should allow the application of tools developped for Van der Waals materials to directly produce functionalized oxide nanosheets.ExperimentsThe Aurivillius phase Bi2SrTa2O9 is functionalized by a linear aliphatic phosphonic acid via microwave-assisted reactions. The structure of the hybrid material and the coordination of the phosphonate group is scrutinized, notably by Pair Distribution Function. This functionalized layered oxide is then exfoliated in one hour in organic solvent, using high shear force dispersion. The obtained nanosheets are characterized in suspension and as deposits to ensure their chemical integrity.FindingsThe covalent functionalization decreases the electrostatic cohesion between the inorganic layers leading to an efficient exfoliation in short time under shearing. The functionalization of the bulk material is preserved on the nanosheets upon exfoliation and plays a major role to enable liquid-phase exfoliation and in the stability of the resulting suspensions. This strategy is very promising for the straighforward preparation of functionalized nanosheets, paving the way for versatile design of new (multi)functional hybrid nanosheets for various potential applications

    Intravenous and intratumoral injection of Pluronic P94: The effect of administration route on biodistribution and tumor retention

    No full text
    International audiencePluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111 In-DTPA) on tumor uptake/ retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention overtime in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs

    SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State

    No full text
    Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of 111In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.Version before revisions, but the revisions were minor.RST/Biomedical ImagingRST/Applied Radiation & IsotopesChemE/Advanced Soft Matte
    corecore