45 research outputs found

    Analysis of toxic and non-toxic Alexandrium (Dinophyceae) species using ribosomal RNA gene sequences

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution November 1992Sequences of small subunit (Ss) and large subunit (Ls) ribosomal RNA genes (rDNA) from the marine dinoflagellates Alexandrium tamarense, A. catenella, A. fundyense, A. affine, A. minutum, A. lusitanicum and A. andersoni were compared to assess the organisms' relationships. Cultures represent isolates from North America, Western Europe, Thailand, Japan, Australia and the ballast water of several cargo vessels, and include both toxic and non-toxic strains. An emphasis was placed on the A. tamarense/catenella/fundyense "species complex," a group of morphotypically-similar organisms found in many regions of the world. Two distinct SsrRNA genes, termed the "A gene" and the "B gene," were found in a toxic A. fundyense isolated from eastern North America. The B gene is considered to be a pseudogene. A restriction fragment length polymorphism (RFLP) assay developed to detect the A and B genes revealed five distinct groups of Alexandrium isolates. Three subdivide the A. tamarense/catenella/fundyense complex, but do not correlate with morphospecies designations. The two remaining groups are associated with cultures that clearly differ morphologically from the A. tamarense/ catenella/fundyense group: the fourth group consists of A. affine isolates, and the fifth group is represented by A. minutum, A.lusitanicum and A. andersoni. The B gene was only found in A. tamarense/catenella/ fundyense, but not in all members of this species complex. The B gene is not uniformly distributed among global populations of Alexandrium. All A. tamarense/catenella/fundyense isolates from North America harbor this gene, but it has also been found in some A. tamarense from scattered locations in Japan, as well as in A. tamarense from the ballast water of one cargo vessel which was on a defined run from Japan to Australia. The B gene may be endemic to North American populations of A. tamarense/catenella/fundyense. It is possible that in the recent past North American A. tamarense were introduced to Japanese waters, and cysts of these organisms have been transported from Japan to Australia. A subset of isolates examined using the the RFLP assay were also compared by cloning and sequencing a fragment of their LsrDNA. Eight major classes of LsrDNA sequences, termed "ribotypes," were identified. Five ribotypes subdivide members of the A. tamarense/catenella!fundyense complex; all isolates containing the B gene cluster as one ribotype. The three remaining ribotypes are typified by: 1) A. affine; 2) A. minutum and A. lusitanicum; and, 3) A. andersoni. LsrDNAs from A. minutum and A. lusitanicum are indistinguishable. A. minutum!lusitanicum/andersoni may represent another Alexandrium species complex, analogous to the A. tamarense/catenella/fundyense group. An organisms' ability to produce toxin appears to be correlated with its LsrDNA phylogenetic lineage. Ribotypes ascribed by the LsrDNA sequences are in complete agreement with, and offer a finer-scale resolution of, groups defined by SsrDNA restriction patterns. The SsrDNA RFLP groups and LsrDNA ribotypes are useful species- and population-specific markers. Alexandrium tamarense/catenella/fundyense exist as geneticallydistinct "strains" (populations), not three genetically-distinct species: representatives collected from the same geographic region appear the most similar, regardless of morphotype, whereas those from geographicallyseparated populations are more divergent even when the same morphospecies are compared. Contrary to this general pattern, A. tamarense/catenella from Japan were found to be exceptionally heterogeneous. Ballast water samples show that viable cysts (resting spores) of toxigenic A. tamarense/catenella are being discharged into Australian ports from multiple, genetically-distinct source populations. The rDNA sequences were also used to test theories accounting for the evolution and global dispersal of A. tamarense/catenella/fundyense. Results suggest a monophyletic radiation of these organisms from a common ancestor that included, or gave rise to, multiple morphotypes. Populations appear to have diverged as a result of vicariance (geographic isolation). The co-occurrence of genetically-distinct strains of these organisms is an indication of dispersal. An example of this is seen in Japan where an introduction of North American A. tamarense appears likely. Determining the timing of dispersal events is problematic if based strictly on rDNA sequence similarities, since these molecules undergo change on a scale of millions of years.This work was supported in part by a grant from the National Science Foundation to D. M. Anderson (contract number OCE89- 11226), the Woods Hole Oceanographic Institution Ocean Ventures Fund and the Woods Hole Oceanographic Institution Education Office

    Microbial community transcriptional networks are conserved in three domains at ocean basin scales

    Get PDF
    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.Gordon and Betty Moore Foundation (3777)National Science Foundation (U.S.) (Grant EF0424599)Simons Foundation (Simons Collaboration on Ocean Processes and Ecology

    Targeted sampling by autonomous underwater vehicles

    Get PDF
    Β© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Ryan, J. P., Kieft, B., Hobson, B. W., McEwen, R. S., Godin, M. A., Harvey, J. B., Barone, B., Bellingham, J. G., Birch, J. M., Scholin, C. A., & Chavez, F. P. Targeted sampling by autonomous underwater vehicles. Frontiers in Marine Science, 6 (2019): 415, doi:10.3389/fmars.2019.00415.In the vast ocean, many ecologically important phenomena are temporally episodic, localized in space, and move according to local currents. To effectively study these complex and evolving phenomena, methods that enable autonomous platforms to detect and respond to targeted phenomena are required. Such capabilities allow for directed sensing and water sample acquisition in the most relevant and informative locations, as compared against static grid surveys. To meet this need, we have designed algorithms for autonomous underwater vehicles that detect oceanic features in real time and direct vehicle and sampling behaviors as dictated by research objectives. These methods have successfully been applied in a series of field programs to study a range of phenomena such as harmful algal blooms, coastal upwelling fronts, and microbial processes in open-ocean eddies. In this review we highlight these applications and discuss future directions.This work was supported by the David and Lucile Packard Foundation. The 2015 experiment in Monterey Bay was partially supported by NOAA Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Grant NA11NOS4780030. The 2018 SCOPE Hawaiian Eddy Experiment was partially supported by the National Science Foundation (OCE-0962032 and OCE-1337601), Simons Foundation Grant #329108, the Gordon and Betty Moore Foundation (Grant #3777, #3794, and #2728), and the Schmidt Ocean Institute for R/V Falkor Cruise FK180310. Publication of this paper was funded by the Schmidt Ocean Institute

    Diversity and toxicity of Pseudo-nitzschia species in Monterey Bay : perspectives from targeted and adaptive sampling

    Get PDF
    Author Posting. Β© The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Harmful Algae 78 (2018): 129-141, doi:10.1016/j.hal.2018.08.006.Monterey Bay, California experiences near-annual blooms of Pseudo-nitzschia that can affect marine animal health and the economy, including impacts to tourism and commercial/recreational fisheries. One species in particular, P. australis, has been implicated in the most toxic of events, however other species within the genus can contribute to widespread variability in community structure and associated toxicity across years. Current monitoring methods are limited in their spatial coverage as well as their ability to capture the full suite of species present, thereby hindering understanding of HAB events and limiting predictive accuracy. An integrated deployment of multiple in situ platforms, some with autonomous adaptive sampling capabilities, occurred during two divergent bloom years in the bay, and uncovered detailed aspects of population and toxicity dynamics. A bloom in 2013 was characterized by spatial differences in Pseudo39 nitzschia populations, with the low-toxin producer P. fraudulenta dominating the inshore community and toxic P. australis dominating the offshore community. An exceptionally toxic bloom in 2015 developed as a diverse Pseudo-nitzschia community abruptly transitioned into a bloom of highly toxic P. australis within the time frame of a week. Increases in cell density and proliferation coincided with strong upwelling of nutrients. High toxicity was driven by silicate limitation of the dense bloom. This temporal shift in species composition mirrored the shift observed further north in the California Current System off Oregon and Washington. The broad scope of sampling and unique platform capabilities employed during these studies revealed important patterns in bloom formation and persistence for Pseudo-nitzschia. Results underscore the benefit of expanded biological observing capabilities and targeted sampling methods to capture more comprehensive spatial and temporal scales for studying and predicting future events.This work was supported by the National Oceanic and Atmospheric Administration (NA11NOS4780055, NA11NOS4780056, NA11NOS4780030) and a fellowship to H. Bowers from the Packard Foundation

    Underwater Application of Quantitative PCR on an Ocean Mooring

    Get PDF
    The Environmental Sample Processor (ESP) is a device that allows for the underwater, autonomous application of DNA and protein probe array technologies as a means to remotely identify and quantify, in situ, marine microorganisms and substances they produce. Here, we added functionality to the ESP through the development and incorporation of a module capable of solid-phase nucleic acid extraction and quantitative PCR (qPCR). Samples collected by the instrument were homogenized in a chaotropic buffer compatible with direct detection of ribosomal RNA (rRNA) and nucleic acid purification. From a single sample, both an rRNA community profile and select gene abundances were ascertained. To illustrate this functionality, we focused on bacterioplankton commonly found along the central coast of California and that are known to vary in accordance with different oceanic conditions. DNA probe arrays targeting rRNA revealed the presence of 16S rRNA indicative of marine crenarchaea, SAR11 and marine cyanobacteria; in parallel, qPCR was used to detect 16S rRNA genes from the former two groups and the large subunit RuBisCo gene (rbcL) from Synecchococcus. The PCR-enabled ESP was deployed on a coastal mooring in Monterey Bay for 28 days during the spring-summer upwelling season. The distributions of the targeted bacterioplankon groups were as expected, with the exception of an increase in abundance of marine crenarchaea in anomalous nitrate-rich, low-salinity waters. The unexpected co-occurrence demonstrated the utility of the ESP in detecting novel events relative to previously described distributions of particular bacterioplankton groups. The ESP can easily be configured to detect and enumerate genes and gene products from a wide range of organisms. This study demonstrated for the first time that gene abundances could be assessed autonomously, underwater in near real-time and referenced against prevailing chemical, physical and bulk biological conditions

    Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle

    Get PDF
    Β© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Kieft, B., Hobson, B. W., Ryan, J. P., Barone, B., Preston, C. M., Roman, B., Raanan, B., Marin,Roman,,III, O'Reilly, T. C., Rueda, C. A., Pargett, D., Yamahara, K. M., Poulos, S., Romano, A., Foreman, G., Ramm, H., Wilson, S. T., DeLong, E. F., Karl, D. M., Birch, J. M., Bellingham, J. G., & Scholin, C. A. Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 45(4), (2020): 1308-1321, doi:10.1109/JOE.2019.2920217.Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.10.13039/501100008982 - National Science Foundation 10.13039/100000936 - Gordon and Betty Moore Foundation 10.13039/100000008 - David and Lucile Packard Foundation 10.13039/100016377 - Schmidt Ocean Institute 10.13039/100000893 - Simons Foundatio

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. Β© Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)

    Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton

    Get PDF
    Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically under-sampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities
    corecore