299 research outputs found

    Wing symmetry and flight activity

    Get PDF
    We compared bilateral structures (wings) of flying versus non-flying insects in two lines of #P. megistus$ which differed only by their laboratory maintenance time : PM1 (more than five generations in insectarium) and PM2 (one or two generations under laboratory conditions). Insects were processed according to Schofield (1980) and observed through a period of 30 days. During this time the insects that had flight (gf, for "good" flyers) and their wings extracted for morphometry. At the end of this period the same number of insects that did not fly (bf, for "bad" flyers), were used as a control and submitted to the same analysis. Fluctuating asymmetry (FA) was estimated at nine distances (A, B, C, D, E, H, 1, 2 and 3). FA occurs as a result of random deviations in the developement of bilaterally symmetric traits, and is considered as a useful trait for monitoring stress in the laboratory and in natural environments (Parsons, 1990). For each sample, FA values were calculated for each character as the sum of the squared signed differences between sides divided by the number of individuals sampled, i.e., ((Li-Ri)2)/N). This is equivalent to index 5 of Palmer and Strobek (1986) which they state is best able to discriminate true differences in FA. As the index to estimate asymmetry is a variance, differences between samples were tested for significance using tests of homogeneity of variances (Ho : s1=s2). Due to low sample size, statistical analysis was not applied to PM2 females (only two individuals). The PM1 bf females (6 insects) were more asymmetric than their gf counterparts (5 insects) at four wings traits (2,3 in PM1 and 2 in PM2) (gf=7 insects and bf=7 insects). Conversely, one character out of nine was found more asymmetric in gf either from PM1 (character 3 for PM1 females and E for PM1 males) or PM2 males (character D). (RĂŠsumĂŠ d'auteur

    Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles

    Get PDF
    YesStudies on the substrate selectivity of recombinant ferrous-iron- and 2-oxoglutarate-dependent proline hydroxylases (PHs) reveal that they can catalyse the production of dihydroxylated 5-, 6-, and 7-membered ring products, and can accept bicyclic substrates. Ring-substituted substrate analogues (such hydroxylated and fluorinated prolines) are accepted in some cases. The results highlight the considerable, as yet largely untapped, potential for amino acid hydroxylases and other 2OG oxygenases in biocatalysis

    The effects of home-based exercise therapy for breast cancer-related fatigue induced by radical radiotherapy

    Get PDF
    Background Radiotherapy (RT) can lead to cancer-related fatigue (CRF) and decreased health-related quality of life (HRQoL) in breast cancer patients. The purpose of this trial was to examine the feasibility and efficacy of a home-based resistance and aerobic exercise intervention for reducing CRF and improving HRQoL in breast cancer patients during RT. Methods Women with breast cancer (N = 106) commencing RT were randomized to 12 weeks of home-based resistance and aerobic exercise (EX) or usual care/control (CON). The primary endpoint was CRF, with secondary endpoints of HRQoL, sleep duration and quality, and physical activity. Measurements were undertaken prior to RT, at completion of RT (~ 6 weeks), at completion of the intervention (12 weeks), and 6 and 12 months after RT completion, while CRF was also measured weekly during RT. Results Eighty-nine women completed the study (EX = 43, CON = 46). Over the 12-week intervention, EX completed 1–2 resistance training sessions and accumulated 30–40 min of aerobic exercise weekly. For CRF, EX had a quicker recovery both during and post-RT compared to CON (p < 0.05). Moreover, there was a significant difference in HRQoL between groups at RT completion, with HRQoL unchanged in CON and higher in EX (p < 0.05). There was no change in sleep duration or quality for either group and there were no exercise-related adverse effects. Conclusions Home-based resistance and aerobic exercise during RT is safe, feasible, and effective in accelerating CRF recovery and improving HRQoL. Improvements in CRF and HRQoL for these patients can be achieved with smaller exercise dosages than stated in the generic recommendations for breast cancer

    Crotonases: Nature’s exceedingly convertible catalysts

    Get PDF
    YesThe crotonases comprise a widely distributed enzyme superfamily that has multiple roles in both primary and secondary metabolism. Many crotonases employ oxyanion hole-mediated stabilization of intermediates to catalyze the reaction of coenzyme A (CoA) thioester substrates (e.g., malonyl-CoA, ι,β-unsaturated CoA esters) both with nucleophiles and, in the case of enolate intermediates, with varied electrophiles. Reactions of crotonases that proceed via a stabilized oxyanion intermediate include the hydrolysis of substrates including proteins, as well as hydration, isomerization, nucleophilic aromatic substitution, Claisen-type, and cofactor-independent oxidation reactions. The crotonases have a conserved fold formed from a central β-sheet core surrounded by ι-helices, which typically oligomerizes to form a trimer or dimer of trimers. The presence of a common structural platform and mechanisms involving intermediates with diverse reactivity implies that crotonases have considerable potential for biocatalysis and synthetic biology, as supported by pioneering protein engineering studies on them. In this Perspective, we give an overview of crotonase diversity and structural biology and then illustrate the scope of crotonase catalysis and potential for biocatalysis.Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Wellcome Trus

    Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo

    Get PDF
    Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis. The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods: In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro. In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain. This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest

    Low diversity of a key phytoplankton group along the West Antarctic Peninsula

    Get PDF
    The West Antarctic Peninsula (henceforth “Peninsula”) is experiencing rapid warming and melting that is impacting the regional marine food web. The primary phytoplankton groups along the Peninsula are diatoms and cryptophytes. Relative to diatoms, there has been little focus on regional cryptophytes, and thus our understanding of their diversity and ecology is limited, especially at the species level. This gap is important, as diatoms and cryptophytes play distinct roles in the regional marine food web and biogeochemistry. Here, we use a phylogenetic placement approach with 18S rRNA gene amplicon sequence variants to assess surface ocean cryptophyte diversity and its drivers at a high taxonomic resolution along the Peninsula. Data were collected over 5 years (2012–2016) during the regional research cruises of the Palmer Long-Term Ecological Research program. Our results indicate that there are two major cryptophyte taxa along the Peninsula, consisting of distinct Geminigera spp., which in aggregate always comprise nearly 100% of the cryptophyte community (indicating low taxa evenness). The primary taxon dominates the cryptophyte community across all samples/years, which span a broad range of oceanographic conditions. A shift in cryptophyte community composition between a lower (higher) primary (secondary) taxon percentage is associated with distinct oceanographic conditions, including lower (higher) temperature, salinity, nutrients, and cryptophyte relative abundance (phytoplankton biomass and diatom relative abundance). These results emphasize the need for a full characterization of the ecology of these two taxa, as it is predicted that cryptophytes will increase along the Peninsula given projections of continued regional environmental change

    Mechanistic Insights into β-Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation

    Get PDF
    β-Lactamases are a major threat to the clinical use of carbapenems, which are often antibiotics of last resort. Despite this, the reaction outcomes and mechanisms by which β-lactamases degrade carbapenems are still not fully understood. The carbapenem bicyclic core consists of a β-lactam ring fused to a pyrroline ring. Following β-lactamase-mediated opening of the β-lactam, the pyrroline may interconvert between an enamine (2-pyrroline) form and two epimeric imine (1-pyrroline) forms; previous crystallographic and spectroscopic studies have reported all three of these forms in the contexts of hydrolysis by different β-lactamases. As we show by NMR spectroscopy, the serine β-lactamases (KPC-2, SFC-1, CMY-10, OXA-23, and OXA-48) and metallo-β-lactamases (NDM-1, VIM-1, BcII, CphA, and L1) tested all degrade carbapenems to preferentially give the Δ2 (enamine) and/or (R)-Δ1 (imine) products. Rapid non-enzymatic tautomerisation of the Δ2 product to the (R)-Δ1 product prevents assignment of the nascent enzymatic product by NMR. The observed stereoselectivity implies that carbapenemases control the form of their pyrroline ring intermediate(s)/product(s), thereby preventing pyrroline tautomerisation from inhibiting catalysis.FWN – Publicaties zonder aanstelling Universiteit Leide

    A New Mechanism for β‐Lactamases: Class D Enzymes Degrade 1β‐Methyl Carbapenems through Lactone Formation

    Get PDF
    β‐Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl‐enzyme intermediate. We show that class D β‐lactamases also degrade clinically used 1β‐methyl‐substituted carbapenems through the unprecedented formation of a carbapenem‐derived β‐lactone. β‐Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl‐enzyme intermediate. The carbapenem‐derived lactone products inhibit both serine β‐lactamases (particularly class D) and metallo‐β‐lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.FWN – Publicaties zonder aanstelling Universiteit Leide
    • …
    corecore