9 research outputs found

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    A panoramic coded aperture gamma camera for radioactive hotspots localization

    No full text
    International audienceA known disadvantage of the coded aperture imaging approach is its limited field-ofview (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype hasbeen developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 µm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,φ). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns

    On the use of pixelated plastic scintillator and silicon photomultipliers array for coded aperture gamma-neutron imaging

    No full text
    International audienceWe report the investigations made on the use of pixelated plastic scintillator (PS) and silicon photomultipliers (SiPMs) array applied to coded aperture gamma-neutron imaging. Specifically, verification of the ability of a multiplexing readout to discriminate and localize neutron interactions was studied. In its intended configuration, the gamma-neutron imager design consists of a coded aperture aligned with a matrix of 12 × 12 PS each coupled to a SiPM. The coded aperture is a rank 7 modified uniformly redundant array (MURA), composed of 1.2 cm of tungsten, with a surface area of 100.4 mm × 100.4 mm and placed at 5 cm from the detector. The pixelated PS is composed of polystyrene and standard fluorophores (20 wt% PPO, 0.03 wt% POPOP) loaded with a lithium carboxylate (Li α -valerate), which allows the triple discrimination between thermal neutrons, fast neutrons, and photons. Each pixel of PS has a dimension of 3.6 mm × 3.6 mm × 3.6 mm and they are separated from each other by 0.6 mm of polytetrafluoroethylene (PTFE). The photonic and electronic readout consists of the ArrayC-30035-144P SiPM from SensL, Cork, Ireland, connected to the diode coupled charge division readout from AiT. First, this neutron imager design was modeled and simulated using the MCNP6 Monte Carlo code. The encoding capability, field of view, and spatial resolution of the neutron imager were therefore evaluated by simulation. Then, we detailed the experimental setups implemented to demonstrate the feasibility of coupling pixelated PS to SiPM to localize radioactive sources and showed the results obtained. Finally, based on this position-sensitive gamma-neutron detector, a gamma-neutron imager was prototyped and tested

    The VINON-LOCA test facility: exploring the LOCA phenomenology through an out-of-pile thermal sequence on irradiated pressurized fuel rod

    No full text
    Since the out-of-pile semi-integral tests performed at Studsvik in 2011 for the NRC [1] and the Halden Loss-Of-Coolant Accident (LOCA) test series IFA-650 [2], a major safety interest has raised for Fuel Fragmentation, Relocation and Dispersal (FFRD) during a LOCA sequence. In addition to the characteristics of the fuel ejected from the rod after the clad failure, the fuel behaviour before the clad failure is still to be investigated, especially its fragmentation and its possible relocation within the rod during the clad ballooning phase. Furthermore, the chronology and the sequencing of these phenomena is of particular interest. For this purpose, the VINON-LOCA program, lying in the framework of a trilateral agreement between EDF, Framatome and CEA, is aimed at performing Out-Of-Pile heating tests on irradiated repressurized fuel rods, reproducing a typical Loss Of Coolant Accident thermal sequence. The VINON-LOCA experimental set-up is located in the so-called VERDON lab of the LECA-STAR hot cell complex. This lab was dedicated to the VERDON-ISTP program [3]. The VINON-LOCA set-up is thus largely instrumented for addressing not only these FFRD topics, but also Fission Gas Release (FGR), combining both online measurement (gamma stations, gamma camera, acoustic sensor, pressure, temperatures, flow meters, microGC…), and preand post-test characterization (gamma scanning, tomography, metrology, fuel fragments weighing and sieving, gas analyses…). An extensive and substantial qualification campaign has been performed to validate the furnace design regarding the desired test conditions, and to qualify the instrumentation. Following some preliminary modelling and calculations, it has included tests on an out-of-cell twin mockup and tests on dummy inactive rods in the hot cell. This allowed achieving successfully the first experimental qualification test of the program end of 2019 on an irradiated UO2 fuel rodlet. A second irradiated experiment is planned with increased instrumentation capabilities, notably a 2D gamma camera for online fuel motion detection

    Optimization of the Charge Comparison Method for Multiradiation Field Using Various Measurement Systems

    No full text
    International audienceThis article presents a procedure for optimizing the charge comparison method (CCM) used for pulse shape discrimination (PSD). Without prior knowledge of the signals or the readout system, our procedure automatically optimizes the integration periods maximizing the discrimination ability of the radiation detector. This procedure is innovative in its adaptability and automation without being complicated to implement on a standard computer. Another advantage of this approach is the possibility to use it even if the operation of the readout system and the recording process of the signal is not fully known. Therefore, it enables all detection systems generating signals whose temporal evolution depends on the origin to optimize the integration periods of the CCM. Our procedure is based on verifying that two criteria are met in terms of the number of components and the correlation of Gaussian fits made on the distribution of the tail-to-total integral resulting from the CCM. We tested the procedure for different application cases. First, the optimization of the integration periods of the CCM was performed for the discrimination between fast neutrons and gamma rays with a plastic scintillator and a silicon photomultiplier (SiPM) in the energy range [250 keVee; 4.5 MeVee]. The integration periods, from the laboratory's experience with photomultiplier tubes (PMTs) and plastic scintillators, gave a Figure of Merit (FoM) of 0.58 corresponding to a rejection ratio (RR) of 8.6%. The procedure improved the FoM up to 0.88 corresponding to a RR of 1.9%. We also applied the procedure to the discrimination between beta and gamma rays with a PMT and a phoswich organic detector and to the discrimination between signals collected from neutrons or partial discharges within a fission chamber
    corecore