496 research outputs found

    Preliminary results on performance testing of a turbocharged rotary combustion engine

    Get PDF
    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured

    HIGH-PRESSURE MECHANICAL PROPERTIES OF ROCKS FROM WAGON WHEEL NO. 1, PINEDALE, WYOMING.

    Get PDF

    Visualization of flows in a motored rotary combustion engine using holographic interferometry

    Get PDF
    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique

    Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure

    Full text link
    The following article appeared in Journal of Applied Physics 111.3 (2012): 034903 and may be found at http://scitation.aip.org/content/aip/journal/jap/111/3/10.1063/1.3679604Na has deliberately been incorporated into Cu(In,Ga)Se2 (CIGSe) chalcopyrite thin-film solar cell absorbers deposited on Mo-coated polyimide flexible substrates by adding differently thick layers of NaF in-between CIGSe absorber and Mo back contact. The impact of Na on the chemical and electronic surface structure of CIGSe absorbers with various Cu-contents deposited at comparatively low temperature (420 C) has been studied using x-ray photoelectron and x-ray excited Auger electron spectroscopy. We observe a higher Na surface content for the Cu-richer CIGSe samples and can distinguish between two different chemical Na environments, best described as selenide-like and oxidized Na species, respectively. Furthermore, we find a Cu-poor surface composition of the CIGSe samples independent of Na content and - for very high Na contents - indications for the formation of a (Cu,Na)-(In,Ga)-Se like compound. With increasing Na surface content, also a shift of the photoemission lines to lower binding energies could be identified, which we interpret as a reduction of the downward band bending toward the CIGSe surface explained by the Na-induced elimination of In Cu defects.X.S., R.F., D.G., R.G.W., and M.B. are grateful to the Helmholtz-Association for financial support (VH-NG-423). R.F. also acknowledges the support by the German Academic Exchange Agency (DAAD; 331 4 04 002)

    CdS/Cu(In,Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process

    Get PDF
    In this letter, we report externally confirmed total area efficiencies reaching up to 12.9% for CdS/Cu(In,Ga)S2 based solar cells. These are the highest externally confirmed efficiencies for such cells. The absorbers were prepared from sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor. Structural, compositional, and electrical properties of one of these champion cells are presented. The correlation between the Ga distribution profile and solar cell properties is discussed

    Electron-beam-induced current at absorber back surfaces of Cu (In,Ga) Se2 thin-film solar cells

    Full text link
    The following article appeared in Journal of Applied Physics 115.1 (2014): 014504 and may be found at http://scitation.aip.org/content/aip/journal/jap/115/1/10.1063/1.4858393The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se2 (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minima with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.This work was supported in part by the BMU projects comCIGS and comCIGSII. R.C. acknowledges financial support from Spanish MINECO within the program Ramon y Cajal (RYC-2011-08521)
    corecore