77 research outputs found

    A novel multivariate STeady-state index during general ANesthesia (STAN)

    Get PDF
    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy, Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio

    Controlling Level of Unconsciousness by Titrating Propofol with Deep Reinforcement Learning

    Full text link
    Reinforcement Learning (RL) can be used to fit a mapping from patient state to a medication regimen. Prior studies have used deterministic and value-based tabular learning to learn a propofol dose from an observed anesthetic state. Deep RL replaces the table with a deep neural network and has been used to learn medication regimens from registry databases. Here we perform the first application of deep RL to closed-loop control of anesthetic dosing in a simulated environment. We use the cross-entropy method to train a deep neural network to map an observed anesthetic state to a probability of infusing a fixed propofol dosage. During testing, we implement a deterministic policy that transforms the probability of infusion to a continuous infusion rate. The model is trained and tested on simulated pharmacokinetic/pharmacodynamic models with randomized parameters to ensure robustness to patient variability. The deep RL agent significantly outperformed a proportional-integral-derivative controller (median absolute performance error 1.7% +/- 0.6 and 3.4% +/- 1.2). Modeling continuous input variables instead of a table affords more robust pattern recognition and utilizes our prior domain knowledge. Deep RL learned a smooth policy with a natural interpretation to data scientists and anesthesia care providers alike.Comment: International Conference on Artificial Intelligence in Medicine 202

    The breast feeding mother and xenon anaesthesia: four case reports. Breast feeding and xenon anaesthesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Four nursing mothers consented to anaesthesia for urgent surgery only on condition that their ability to breast feed would not be impaired.</p> <p>Methods</p> <p>Following induction of general anaesthesia with propofol and remifentanil, 65-69% xenon supplemented with remifentanil was used as an inhalational anaesthetic for maintenance.</p> <p>Results</p> <p>After finishing surgery the women could be extubated between 2:52 and 7:22 minutes. The women were fully alert just minutes after extubation and spent about 45 minutes in the recovery room before discharge to a regular ward. They resumed regular breast feeding some time later. The propofol concentration in the blood was measured after 0, 30, 90, and 300 minutes and in the milk after 90 and 300 minutes. Just 90 minutes after extubation, the concentration of propofol in the milk was limited (> 3 mg/l) so that pharmacological effects on the babies were excluded after oral intake. Also, no traces of xenon gas were found in the maternal milk at any time. After propofol induction and maintenance of anaesthesia with xenon in combination with a water-soluble short-acting drug like remifentanil, the concentration of propofol in maternal milk is low (> 3 mg/l 90 min after anesthesia) and harmless after oral intake.</p> <p>Conclusions</p> <p>These results, as well as the rapid elimination and absence of metabolism of xenon, are of great interest to nursing mothers. General anaesthesia with propofol for induction only, combined with remifentanil and xenon for maintenance, has not yet been described in breast feeding mothers.</p

    Human physiologically based pharmacokinetic model for propofol

    Get PDF
    BACKGROUND: Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK) model for propofol. METHODS: PKQuest, a freely distributed software routine , was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1) the value of the propofol oil/water partition coefficient; 2) the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. RESULTS: The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance) is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters). The average weighted residual error (WRE) of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. CONCLUSION: A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a PBPK model is that it can be used to predict the changes in kinetics produced by variations in physiological parameters. As one example, the model simulation of the changes in pharmacokinetics for morbidly obese subjects is discussed

    Control of Anesthesia Based on Singularly Perturbed Model

    No full text
    International audienceThis chapter deals with the control of anesthesia taking into account the pos-itivity together with the upper limitation constraints of the variables and the target interval tolerated for the depth of anesthesia during a surgery. Due to the presence of multiple time scale dynamics in the anesthesia model, the system is re-expressed through a singularly perturbed system allowing to decouple the fast dynamics from the slow ones. Differently from general approaches for singularly perturbed systems , the control objective is then to control and accelerate the fast system without interest in modifying the slow dynamics. Thus, a structured state feedback control is proposed through quasi-LMI (linear matrix inequalities) conditions. The characterization of domains of stability and invariance for the system is provided. Associated convex optimization issues are then discussed. Finally, the theoretical conditions are evaluated on a simulated patient case
    • 

    corecore