388 research outputs found

    An MHD study of SN 1006 and determination of the ambient magnetic field direction

    Get PDF
    In this work we employ an MHD numerical code to reproduce the morphology observed for SN 1006 in radio synchrotron and thermal X-ray emission. We introduce a density discontinuity, in the form of a flat cloud parallel to the Galactic Plane, in order to explain the NW filament observed in optical wavelengths and in thermal X-rays. We compare our models with observations. We also perform a test that contrasts the radio emitting bright limbs of the SNR against the central region, finding additional support to our results. Our main conclusion is that the most probable direction of the ambient magnetic field is on average perpendicular to the Galactic Plane.Comment: 7 pages, 5 figures, accepted by MNRA

    3D MHD simulation of polarized emission in SN 1006

    Get PDF
    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter QQ, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter QQ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.Comment: 6 pages, 4 figures, accepted by MNRA

    On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study

    Get PDF
    We present a 3D hydrodynamic study of the effects that different stellar wind conditions and planetary wind structures have on the calculated Ly-α\alpha absorptions produced during the transit of HD 209458b. Considering a range of stellar wind speeds \sim[350-800] km s1^{-1}, coronal temperature \sim[3-7] ×106\times10^{6} K and two values of the polytropic index Γ\Gamma \sim[1.01-1.13], while keeping fixed the stellar mass loss rate, we found a that a M˙p\dot M_p range between \sim[3-5] ×1010\times 10^{10}g s1^{-1} give account for the observational absorption in Ly-α\alpha measured for the planetary system. Also, several models with anisotropic evaporation profiles for the planetary escaping atmosphere were carried out, showing that both, the escape through polar regions and through the night side yields larger absorptions than an isotropic planetary wind

    Photo-ionization of planetary winds: case study HD209458b

    Get PDF
    Close-in hot Jupiters are exposed to a tremendous photon flux that ionizes the neutral escaping material from the planet leaving an observable imprint that makes them an interesting laboratory for testing theoretical models. In this work we present 3D hydrodynamic simulations with radiation transfer calculations of a close-in exoplanet in a blow-off state. We calculate the Ly-α\alpha absorption and compare it with observations of HD 209458b an previous simplified model results.Our results show that the hydrodynamic interaction together with a proper calculation of the photoionization proccess are able to reproduce the main features of the observed Ly-α\alpha absorption, in particular at the blue-shifted wings of the line. We found that the ionizing stellar flux produce an almost linear effect on the amount of absorption in the wake. Varying the planetary mass loss rate and the radiation flux, we were able to reproduce the 10%10\% absorption observed at 100 km s1-100~\mathrm{km~s^{-1}}.Comment: 9 pages, 6 figure

    Origin of the bilateral structure of the supernova remnant G296.5+10

    Get PDF
    In this work, we have modelled the supernova remnant (SNR) G296.5+10, by means of 3D magnetohydrodynamics (MHD) simulations. This remnant belongs to the bilateral SNR group and has an additional striking feature: the rotation measure (RM) in its eastern and western parts are very different. In order to explain both the morphology observed in radio-continuum and the RM, we consider that the remnant expands into a medium shaped by the superposition of the magnetic field of the progenitor star with a constant Galactic magnetic field. We have also carried out a polarization study from our MHD results, obtaining synthetic maps of the linearly polarized intensity and the Stokes parameters. This study reveals that both the radio morphology and the reported RM for G296.5+10 can be explained if the quasi-parallel acceleration mechanism is taking place in the shock front of this remnant.Fil: Moranchel-Basurto, A.. Universidad Nacional Autónoma de México; MéxicoFil: Velazquez, P.. Universidad Nacional Autónoma de México; MéxicoFil: Giacani, Elsa Beatriz. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Toledo Roy, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Schneiter, E.. Universidad Nacional Autónoma de México; MéxicoFil: De Colle, F.. Universidad Nacional Autónoma de México; MéxicoFil: Esquivel, A.. Universidad Nacional Autónoma de México; Méxic

    Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins.

    Get PDF
    Here we made an attempt to obtain partial structural information on the topology of multispan integral membrane proteins of yeast by isolating organellar membranes, removing peripheral membrane proteins at pH 11.5 and introducing chemical crosslinks between vicinal amino acids either using homo- or hetero-bifunctional crosslinkers. Proteins were digested with specific proteases and the products analysed by mass spectrometry. Dedicated software tools were used together with filtering steps optimized to remove false positive crosslinks. In proteins of known structure, crosslinks were found only between loops residing on the same side of the membrane. As may be expected, crosslinks were mainly found in very abundant proteins. Our approach seems to hold to promise to yield low resolution topological information for naturally very abundant or strongly overexpressed proteins with relatively little effort. Here, we report novel XL-MS-based topology data for 17 integral membrane proteins (Akr1p, Fks1p, Gas1p, Ggc1p, Gpt2p, Ifa38p, Ist2p, Lag1p, Pet9p, Pma1p, Por1p, Sct1p, Sec61p, Slc1p, Spf1p, Vph1p, Ybt1p)

    Energy expenditure, physical activity and body-weight control

    Get PDF
    Regular physical exercise and endurance training are associated with low body weight and low body fat mass. The relationship between exercise and body-weight control is complex and incompletely understood. Regular exercise may decrease energy balance through an increase in energy expenditure or an increase in fat oxidation. It may also contribute to weight loss by modulating nutrient intake. An intriguing question that remains unresolved is whether changes in nutrient intake or body composition secondarily affect spontaneous physical activity. If this were the case, physical activity would represent a major adaptative mechanism for body-weight control

    3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    Full text link
    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.Comment: 8 pages, 6 figures, accepted for publication in MNRA

    Mass Transfer, Transiting Stream and Magnetopause in Close-in Exoplanetary Systems with Applications to WASP-12

    Full text link
    We study mass transfer by Roche lobe overflow in close-in exoplanetary systems. The planet's atmospheric gas passes through the inner Lagrangian point and flows along a narrow stream, accelerating to 100-200\kms velocity before forming an accretion disk. We show that the cylinder-shaped accretion stream can have an area (projected in the plane of the sky) comparable to that of the planet and a significant optical depth to spectral line absorption. Such a "transiting cylinder" may produce an earlier ingress of the planet transit, as suggested by recent HST observations of the WASP-12 system. The asymmetric disk produced by the accretion stream may also lead to time-dependent obscuration of the star light and apparent earlier ingress. We also consider the interaction of the stellar wind with the planetary magnetosphere. Since the wind speed is subsonic/sub-Alfvenic and comparable to the orbital velocity of the planet, the head of the magnetopause lies eastward relative to the substellar line (the line joining the planet and the star). The gas around the magnetopause may, if sufficiently compressed, give rise to asymmetric ingress/egress during the planet transit, although more works are needed to evaluate this possibility.Comment: 6 pages with 2 figures. Accepted in ApJ. Small changes (add discussion on asymmetric disks
    corecore