86 research outputs found

    The Importance of Laboratory Experiments in Landslide Investigation

    Get PDF
    This study focuses on a better understanding of mass movements and on the influences of different boundary conditions on velocities of creeping slopes. A well monitored example of a slowly creeping landslide is the mass movement Hochmais - Atemkopf, situated in the Kaunertal, Tyrol, Austria (Fig. 1). The long term monitoring program for more than 40 years of this landslide gives a good impression of its time dependent behaviour. A large amount of additional data, as geological mapping, boreholes, geophysical investigation and so on provides a funded base for the model’s geometry. The most influencing factor for finite element calculations is besides the model’s geometry the rheological model and the therefor adapted material properties. Creep laboratory experiments have been performed and evaluated for the most active sliding zone. Long term shear tests from 1964 have been reevaluated and compared with current long term triaxial tests. The experiments reveal a non linear dependence between equivalent stress and displacement rate. An elasto, visco - plastic rheological model with a non-linear viscose deformation has been fitted to those results

    Spatial transferability of the physically based model TRIGRS using parameter ensembles

    Get PDF
    The development of better, more reliable and more efficient susceptibility assessments for shallow landslides is becoming increasingly important. Physically based models are well-suited for this, due to their high predictive capability. However, their demands for large, high-resolution and detailed input datasets make them very time-consuming and costly methods. This study investigates if a spatially transferable model calibration can be created with the use of parameter ensembles and with this alleviate the time-consuming calibration process of these methods. To investigate this, the study compares the calibration of the model TRIGRS in two different study areas. The first study area was taken from a previous study where the dynamic physically based model TRIGRS was calibrated for the Laternser valley in Vorarlberg, Austria. The calibrated parameter ensemble and its performance from this previous study are compared with a calibrated parameter ensemble of the model TRIGRS for the Passeier valley in South Tyrol, Italy. The comparison showed very similar model performance and large similarities in the calibrated geotechnical parameter values of the best model runs in both study areas. There is a subset of calibrated geotechnical parameter values that can be used successfully in both study areas and potentially other study areas with similar lithological characteristics. For the hydraulic parameters, the study did not find a transferable parameter subset. These parameters seem to be more sensitive to different soil types. Additionally, the results of the study also showed the importance of the inclusion of detailed information on the timing of landslide initiation in the calibration of the model

    A strategy for GIS-based 3-D slope stability modelling over large areas

    Get PDF
    Abstract. GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure (Pf) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a digital elevation model (DEM), ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign Pf to each ellipsoid. The model calculates for each pixel multiple values of FoS and Pf corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of Pf for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing makes it possible to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of Pf and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km2 Collazzone area in Umbria, central Italy

    Finite element computation of magnetohydrodynamic nanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects

    Get PDF
    The present work describes finite element computations for radiative magnetohydrodynamic convective Newtonian nanofluid flow from an oscillating inclined porous plate with variable temperature. Heat source/sink and buoyancy effects are included in the mathematical model. The problem is formulated by employing Tiwari-Das nanofluid model and two water - based nanofluids with spherical shaped metal nano particles as copper and alumina are considered. The Brinkman and Maxwell-Garnetts models are used for the dynamic viscosity and effective thermal conductivity of the nanofluids respectively. An algebraic flux model, the Rosseland diffusion approximation is adopted to simulate thermal radiative flux effects. The dimensionless, coupled governing partial differential equations are numerically solved via the finite element method with weak variational formulation by imposing initial and boundary conditions with a weighted residual scheme. A grid independence study is also conducted. The finite element solutions are reduced to known previous solutions in some limiting cases of the present investigation and are found to be in good agreement with published work. This investigation is relevant to electromagnetic nanomaterial manufacturing processes operating at high temperatures where radiation heat transfer is significant

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Magnets for a Muon Collider : Needs and Plans

    Get PDF
    We describe the magnet challenges for a Muon Collider, an exciting option considered for the future of particle physics at the energy frontier. Starting from the comprehensive work performed by the US Muon Accelerator Program, we have reviewed the performance specifications dictated by beam physics and the operating conditions to satisfy the accelerator needs. Among the many magnets that make up a muon collider, we have identified four systems that represent well the envelope of challenges: the target and capture solenoid, the final cooling solenoid, the accelerator dipoles and the collider dipoles. These systems provide focus for the development of novel concepts, largely based on HTS for reasons of performance, cost and sustainability. After giving a consolidated overview of the needs for the magnet systems, we describe here the basic technology options considered, and the plan for design and development activities.Peer reviewe
    corecore