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Abstract

The development of better, more reliable and more efficient susceptibility assess-

ments for shallow landslides is becoming increasingly important. Physically based

models are well-suited for this, due to their high predictive capability. However, their

demands for large, high-resolution and detailed input datasets make them very time-

consuming and costly methods. This study investigates if a spatially transferable

model calibration can be created with the use of parameter ensembles and with this

alleviate the time-consuming calibration process of these methods. To investigate

this, the study compares the calibration of the model TRIGRS in two different study

areas. The first study area was taken from a previous study where the dynamic physi-

cally based model TRIGRS was calibrated for the Laternser valley in Vorarlberg,

Austria. The calibrated parameter ensemble and its performance from this previous

study are compared with a calibrated parameter ensemble of the model TRIGRS for

the Passeier valley in South Tyrol, Italy. The comparison showed very similar model

performance and large similarities in the calibrated geotechnical parameter values of

the best model runs in both study areas. There is a subset of calibrated geotechnical

parameter values that can be used successfully in both study areas and potentially

other study areas with similar lithological characteristics. For the hydraulic parame-

ters, the study did not find a transferable parameter subset. These parameters seem

to be more sensitive to different soil types. Additionally, the results of the study also

showed the importance of the inclusion of detailed information on the timing of land-

slide initiation in the calibration of the model.
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1 | INTRODUCTION

Shallow landslides pose a worldwide threat to infrastructure and the

population located in mountainous regions (Petley, 2012). With cli-

mate change, this threat will increase even further, and it is becoming

increasingly important that reliable and efficient landslide susceptibil-

ity assessments are developed and applied in threatened areas (Alvioli

et al., 2018; Gariano & Guzzetti, 2016). Physically based methods are

well-suited for this, since their high predictive capability and process-

based nature make them better suited than statistical approaches for

modelling landslide susceptibility under different triggering scenarios

(Chae et al., 2017; Schilirò et al., 2018).

Many different physically based slope stability models for shallow

landslide susceptibility assessment have been developed over the

years. These can be divided into (i) steady-state models (Dietrich &

Montgomery, 1998; Pack et al., 1998) and (ii) dynamic models (Baum

et al., 2010; Medina et al., 2021; Rossi et al., 2013; Simoni et al.,

2008; van Beek, 2002; Wu & Sidle, 1995). Dynamic models differ

from steady-state models due to their ability to assess the temporal

susceptibility of a study area, such as the slope stability response to a
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specific storm event. An issue that still remains with the use of physi-

cally based methods is their time consuming and costly nature, due to

their requirement for large and detailed input datasets (Gariano &

Guzzetti, 2016; Kuriakose et al., 2009; Raia et al., 2014). These high-

resolution datasets are often insufficiently available in the areas

requiring landslide susceptibility assessments (Kuriakose et al., 2009).

Since soil properties can vary significantly within a study area (Herbst

et al., 2006; Zhao et al., 2013), it is difficult to construct complete

datasets even if samples from fieldwork are available. This means that

in physically based modelling, the input datasets often have high

uncertainties, which propagate in the model output.

Recent studies have tried to solve this problem with the imple-

mentation of parameter ensembles (i.e., ranges of calibrated parame-

ter values) as input for physically based models, instead of single

parameter combinations (e.g., de Lima Neves Seefelder et al., 2017;

Medina et al., 2021; Park et al., 2013; Raia et al., 2014; Rossi et al.,

2013; Zieher et al., 2017). This implementation aimed to improve the

model performance and predictive capability of physically based

approaches. The hypothesis was that using parameter ranges as input

could partially account for the uncertainty in the parameter values

and cover their natural variability, which is neglected in approaches

using single parameter combinations. The studies showed a significant

increase in model performance (i.e., the sensitivity and specificity)

when parameter ensembles were used as input for physically based

models (Raia et al., 2014).

The demonstrated capability of parameter ensembles to account

for parameter variability raises the question if a parameter ensemble

can also account for the variability of soil parameters over multiple

study areas. This could be used to calibrate a parameter ensemble for a

physically based model in one site and then transfer this calibration to

another study site without loss of model performance, alleviating the

time-consuming process of model calibration. Only a couple of studies

using the model TRIGRS (Baum et al., 2008) focus on the values of the

calibrated parameters (Ciurleo et al., 2019; de Lima Neves Seefelder

et al., 2017; Zieher et al., 2017), and no studies could be found that

compare the values of the calibrated parameters from different study

areas. However, this comparison could give insight into if and how a

spatially transferable parameter ensemble can be created.

In this study, the performance and the similarities in parameter

values of two calibrated parameter ensembles for the model TRIGRS

in two different study areas are compared with each other. To truly

investigate the spatial transferability, the chosen study areas were

taken from two different regions. However, to define the extent of

the transferability, it was also important that these study areas had

distinct similarities which also occur in other study areas. In addition

to this, the study will make use of a homogeneous approach. This is

done to ensure the applicability of the transferable parameter ensem-

ble to data-poor study areas where insufficient data are available on

the lithology or soil properties for the construction of distributed

input data. In a previous study by Zieher et al. (2017), the model TRI-

GRS was calibrated with a large parameter space (e.g., 10.000 parame-

ter value combinations) in the Laternser valley, Vorarlberg (Austria). A

second study area was found in the Passeier valley, South Tyrol (Italy)

which showed some distinct similarities with the Laternser valley.

However, the areas also showed large differences which indicated

that the calibrated ensemble from Zieher et al. (2017) cannot be used

directly for the calibration of TRIGRS in the Passeier valley. The

following research questions have been formulated to investigate if a

spatially transferable parameter ensemble could be calibrated for both

study areas:

• How well does the parameter space derived for the Laternser val-

ley (Vorarlberg, Austria) perform in the Passeier valley (South Tyrol,

Italy)?

• How does the resulting model calibration for the Passeier valley

compare or differ from the calibration in the Laternser valley?

• Is there a subset of the parameter space that can be used in both

study areas?

2 | STUDY AREA

Two study areas were used to investigate the spatial transferability of

TRIGRS. The first study area was a subcatchment of the Passeier valley

located in South Tyrol (Italy). The second study area was the Laternser

valley located in Vorarlberg (Austria), which was investigated by Zieher

et al. (2017). An overview of both study areas is given in Figures 1 and

2. The areas show similarities in their extensive lodgement till deposits

and extensive forest cover (see also Figures 1 and 2). However, they

also show distinct differences in the storm events that caused land-

slides in the catchments (see Figure 3) and their geological settings

(Figures 1 and 2). For the Passeier valley, the surfacing lithologies,

besides to the lodgment till deposits, are mainly metamorphic, while for

the Laternser valley, these are mainly sedimentary deposits.

2.1 | Passeier valley

The studied 53 km2 subbasin of the Passeier valley is located in the

southern section of the Passeier valley (Vorderpasseier) and includes

the southeast facing slope of the valley. It stretches 14 km in SSW to

NNE direction from Meran to Sankt Leonhard. With regard to the

topography, the elevation ranges from 350 to 2800 m (a.s.l.) and

the slopes are generally steep with an average slope angle of 33�. In

terms of land cover, 35% of the study area is covered by forest, which

is composed of a mixture of fir (Albies alba) and spruce (Picea Abies)

trees and oak (Quercus petraea) trees below 1000 m (a.s.l.)

(Geokatalog, 2022). The remaining area is mainly used as either hay

pastures or as meadows.

2.1.1 | Geology

Geologically, the Passeier valley is located in the lower central

Austroalpine Nappes. The main geological units in the area are the Texel

unit, with surfacing orthogneiss, paragneiss and micaschist lithologies,

and glacial till deposits from the Last Glacial Maximum. Besides this, the

other main surfacing lithologies consist of debris deposits and old land-

slide bodies, which have not been dated. Previous studies have not

found a link between the lithological units and landslide susceptibility in

South Tyrol (Amato et al., 2019). According to Piacentini et al. (2012),

the occurrence of shallow landslides in South Tyrol is more closely

linked to the soil type, where most shallow landslides occur on slopes

with high-permeable soils overlaying low-permeable soils or layers.
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F I GU R E 1 Overview of Passeier valley study area, with an overview of the location given in (a) and (b). The slope map of the study area is
given in (c), with a boxplot of the slope angle distribution in the entire area. Panel (d) shows the used forest cover map (derived from airborne
laser scanning (ALS) data from 2004) and the landslides recorded on 05.08.2016 in the Italian national landslide inventory (IFFI: Inventario dei

Fenomeni Franosi in Italia). Panel (e) shows the geological map of the study area with an overlay of the sample locations of this study and the
location of the meteorological station in St. Martin.

F I GU R E 2 Overview of Laternser valley study area (data taken from Zieher et al. (2017), Zieher et al. (2016)), with an overview of the
location given in (a) and (b). The slope map of the study area is given in (c), with a boxplot of the slope angle distribution in the entire area. Panel
(d) shows the used forest cover map (from 2011) and the landslides mapped by Zieher et al. (2016) for the August 2005 event. Panel (e) shows

the geological map of the study area with an overlay of the sample locations (map taken from Zieher et al. (2017)).
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2.1.2 | Climate and landslide triggering events

The region has a dry marine climate with a cumulative yearly precip-

itation of 774 mm. The peaks in precipitation occur in summer and

later in November. The investigated precipitation event occurred on

5 August 2016 (see Figure 3b). The event was an intense rainfall

event that lasted 15 h, where most of the precipitation (accumulat-

ing to 120 mm) fell in the first 5 h. The maximum precipitation

intensity occurred at 06:00 AM CEST, with an hourly intensity of

36 mm�h�1. Figure 3a also shows that there was no significant pre-

cipitation registered at the St. Martin meteorological station in the

month prior to the event. However, climate reports show that the

months June and July in 2016 were on average wetter months than

the climatological mean (1981–2010) (Munari, Peterlin, Tollardo,

Geier, & Tartarotti, 2016; Munari, Peterlin, Tollardo, Geier, Tartarotti,

& Rastner, 2016) (see also Figure 3a). A further analysis of the full

meteorological record since 1981 showed that the event of August

2016 was the second most extreme event (in terms of cumulative

daily precipitation) recorded by the meteorological station in

St. Martin. The Italian national landslide inventory (IFFI: Inventario dei

Fenomeni Franosi in Italia) registered 16 landslides to the event of

August 2016. The location of these landslides is shown in Figure 1d.

2.2 | Laternser valley

The Laternser valley, located in Vorarlberg (Austria), covers the catch-

ment of the river Frutz. The valley lies in an east to west direction and

is about 52 km2. The elevation ranges from 500 to 2000 m (a.s.l.). Like

the Passeier valley, the slopes are generally steep with a median slope

angle of 27�. In terms of land cover, approximately 50% of the area is

covered by forest, and similarly, to the Passeier valley, the remaining

area is mainly used as hay pastures or meadows. The forest in the

Laternser is composed of fir (Abies alba) and spruce (Picea abies) trees,

with beech (Fagus sylvatica) trees occurring below 1300 m (a.s.l.)

(Zieher et al., 2017).

2.2.1 | Geology

The geological setting includes several different tectonic nappes. In

the western and northern parts of the valley lie the Helvetic nappes

with limestone lithologies (e.g. Schrattenkalk, Seewerkalk). These

lithologies are superimposed to the south-east by the Ultrahelvetic

nappes with clayey marls and shales. In the south eastern part of the

area lie the Penninic nappes, which mainly consist of sandstone and

thinly layered marls. The sandstone from the Penninic nappes

together with the Ultrahelvetic marls are known for their landslide

susceptibility (Zieher et al., 2016). Similar to the Passeier valley, the

Laternser valley has an extensive cover (more than 57%) of till and

hillside debris deposits. Due to their often very high compaction

values, these deposits are very susceptible to forming impermeable

layers within the deposit and can act as the slip surface for the overly-

ing material (Zieher et al., 2016; Zieher et al., 2017). It is expected that

a similar high landslide susceptibility of the lodgement till deposits can

also be found in the Passeier valley.

F I GU R E 3 Daily precipitation registered at the St. Martin, Passeier valley Meteorological station and its deviation from the long-term mean
(1990–2020) for the period of 1 year before the studied event of 5 August 2016 (a). The hourly precipitation intensity of the studied event is

given in (b). Panel (c) shows the precipitation event from the Laternser valley on the 21–23 August 2005 (data taken from Zieher et al. (2017)).
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2.2.2 | Climate and landslide triggering events

The climate of the Laternser valley is warm and temperate. At the

Innerlaterns station, the reported annual precipitation is more than

1700 mm. The investigated landslide triggering event occurred from

21–23 August 2005. A graph of the precipitation intensity during this

event is shown in Figure 3c. This event was much longer and less

intense than the event in the Passeier valley. The maximum hourly

precipitation intensity occurred after 40 h with 18 mm�h�1. The

cumulative precipitation was 252 mm of rainfall after 54 h. There

were 356 landslides found to be related to this event (Zieher et al.,

2016). Their locations are given in Figure 2d.

3 | MATERIALS AND METHODS

An overview of the approach used in this study is given in Figure 4. A

large parameter space, consisting of 10 000 unique parameter value

combinations was used to calibrate the model TRIGRS (Baum et al.,

2008) in the two study areas. To ensure comparability with the exis-

ting calibration for the Laternser valley, the calibration workflow with

area-wide homogeneous parameter values developed by Zieher et al.

(2017) was reproduced in the Passeier valley. The resulting 10 000

model runs were tested with the landslide inventories of the events

that occurred in the two study areas and a ruleset developed by

Zieher et al. (2017) to include the predicted timing of landslide initia-

tion in the parameter calibration process. In this calibration, the

10 000 parameter combinations were filtered down to the 25 best

performing parameter combinations based on the specificity and sen-

sitivity of their predictions. The 25 best performing parameter

combinations from both study areas, also defined as the calibrated

parameter ensembles in this study, were then compared with each

other in terms of their corresponding model performance and the

parameter values occurring within the parameter ensembles. The goal

of this comparison was to find an overlapping subset of the parameter

space that performs well in both study areas.

3.1 | Landslide inventory

Multispectral satellite remote sensing scenes, that is, imagery by

PlanetScope (3 m resolution) and RapidEye (5 m resolution), were

used to investigate the event of 5 August 2016. The analysis was

done visually with the before and after imagery taken from

05/07/2016 till 25/08/2016 (Planet Team, 2022). Since no elevation

data from after the event and no stereographic information were

available, the visual mapping method mainly focussed on the change

in photographic colour, mottling texture, shape, and size of a signature

to determine if the signature originated from a landslide (Guzzetti

et al., 2012). It was assumed that this method could identify all land-

slides in open terrain with a full signature (i.e. both the scarp and

depositional area) of more than 81 m2. In total, 55 landslides were

mapped on the Planet imagery. An overview of the mapped landslides

and a more detailed subset are given in Figure 5a,c.

The inventory was constructed by outlining the full signature

seen on the satellite imagery. However, the full signature also includes

the runout area of the landslide. Since physically based models only

predict the actual failure surface, the inclusion of the runout area in

the validation dataset will lead to overestimation of the predicted fail-

ure areas in the final calibration. For this reason, instead, only the

F I GU R E 4 Flow diagram of the used workflow.

DE VUGT ET AL. 5
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upper 30% of the full footprint was selected, which was assumed to

represent the area of failure initiation. A schematic representation of

this method is given in Figure 5b. Since the landslides from the IFFI

database were mapped as points and contained no information on the

landslide scar area, only the manually mapped landslides on the satel-

lite imagery were used in the validation of the model runs.

3.2 | TRIGRS model

The model TRIGRS 2.0 (Transient Rainfall Infiltration Grid-based

Regional Slope stability) was developed by Baum et al. (2008). A

newer, parallelised version of the model (TRIGRS 2.1) was developed

by Alvioli and Baum (2016). However, the study by Zieher et al.

(2017) implemented several functions to the TRIGRS 2.0 model that

added root cohesion and tree surcharge dynamics. This extended ver-

sion was also used to model the slope stability in the Passeier valley,

to ensure that the results could be compared with the calibration in

the Laternser valley.

The original model (TRIGRS 2.0) consists of two components that

are combined to model the slope stability for a given precipitation

event. First, the model uses a simplified version of Iverson’s one-

dimensional linearized diffusion model (Iverson, 2000) to model pore

pressure as response to infiltration for a specified set of timesteps

during the precipitation event. With this, infiltration is modelled in the

vertical direction and the resulting pore pressure values are calculated

at different depth increments within the soil column of each grid cell.

Slope parallel sub-surface flow is not included in the model, since it is

considered of minor importance for slope infiltration at shorter time-

scales (Berti & Simoni, 2010; Iverson, 2000). In the second compo-

nent, the output of pore pressure values (ψðd,tÞ) is used as part of the

input for the geotechnical component of the model, which uses

the infinite slope method (Equation (1)) to model the slope stability for

the supplied depth increments in each grid cell. In the final output of

the specified timesteps, only the minFOS (minimum Factor Of Safety)

found in the soil column is written to the output map. Grid cells where

the minFOS<1 in one of the timesteps are assumed to have failed

during the modelled event and grid cells where the minFOS≥1 are

assumed to have remained stable during the modelled event.

FOSðd,tÞ¼ tanφ0

tanβ
þ c�ψðd,tÞ � γw � tanφ0

ðγs �dÞ � sinβ � cosβ
, ð1Þ

where d is the depth increment in the soil column (m), t is the time (s),

φ0 is the angle of internal friction (deg), β is the slope angle (deg), c0 is

the cohesion (Pa), γw is the unit weight of water (N�m�3), and γs the

unit weight of soil (N�m�3).

The extended version developed by Zieher et al. (2017) includes

root cohesion (cr ) and tree surcharge (st) components by integrating

the effects directly in the infinite slope method using Equation (2). A

parameter for the rooting depth is used to linearly decrease the root

cohesion over depth until the rooting depth is reached. If the rooting

depth exceeds the regolith depth, the effect of root cohesion is cut-

off at the bedrock boundary.

F I GU R E 5 Comparison of the mapped landslides on Planet imagery and the original landslides from the Inventario dei Fenomeni Franosi in
Italia (IFFI) database (a) (background orthophoto from Geokatalog (2022)), a schematic description of the scarp selection (b) and a detailed view of
the mapped landslide with the used Planetscope scene from 25/08/2016 as background (c).

6 DE VUGT ET AL.
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FOSðd,tÞ¼ tanφ0

tanβ
þc0 þcr �ψðd,tÞ � γw � tanφ0

ðstþ γs �dÞ � sinβ � cosβ
ð2Þ

The initial model conditions were set to those used for the cali-

bration in the Laternser valley (Zieher et al., 2017). With these set-

tings, the hydrological model assumes initially wet conditions, a

steady background infiltration rate of 0.01 times the used saturated

hydraulic conductivity and the initial depth of the water table was

assumed to be located at the bedrock boundary. These initial condi-

tions were assumed to be valid for the August 2015 event in the Pas-

seier valley, since the pre-event precipitation showed wetter than

average conditions for the 2 months leading up to the event (see also

Figure 3a). The values for the root cohesion (2.5 kPa), rooting depth

(1 m) and tree surcharge (2.5 kPa) were also taken from Zieher et al.

(2017). These values were chosen based on the high occurrence of fir

and spruce trees in both the Laternser valley and the Passeier valley.

3.3 | Model input parameterization

Table 1 gives an overview of the required model input for the

extended version of TRIGRS. The topographic model input was pre-

pared for the Passeier valley like for the Laternser valley in the study

by Zieher et al. (2017). Publicly available airborne laser scanning (ALS)

point clouds covering the province of South Tyrol (Geokatalog, 2022)

were automatically classified into ground and nonground points using

the algorithm proposed by Axelsson (2000). Based on the classified

ground points, a digital terrain model (DTM) with a spatial resolution

of 1 m was computed, aggregating the mean elevation per raster cell.

A corresponding digital surface model (DSM) was computed by aggre-

gating the maximum elevation considering all points. Based on the

normalised DSM (DSM-DTM), a forest cover map was computed for

the Passeier valley similar as for the Laternser valley. For the model

runs, the topographic data and the forest cover map were resampled

to a spatial resolution of 10 m which was previously considered feasi-

ble for reproducing shallow landslides (Milledge et al., 2012; Zieher

et al., 2016; Zieher et al., 2017).

The precipitation intensity data were provided by the meteoro-

logical office of South Tyrol (Autonomous Province of Bolzano, 2016),

at a 5 min temporal resolution from the meteorological station located

in St. Martin in Passeier (46.7824�N, 11.2296�E) (see also Figure 1e).

These data were aggregated to a 1 h temporal resolution. Since no

precipitation was reported after 12:00 in the afternoon, only the first

12 h of 5 August was modelled. A graph of the registered precipita-

tion is given in Figure 3b.

The regolith depth was modelled using Equation (3). This equation

was statistically derived from the relationship of slope values (β) (�)

and regolith depth (dmax) (m) measurements from DCPTs (dynamic

cone penetration tests) by Zieher et al. (2017) for the Laternser valley.

This specific model was chosen, since it was in terms of its location

the closest validated regolith depth model to the Passeier valley, and

no information about the regolith depth in the Passeier valley was

available.

dmax ¼
3:028�0:049β for 0:0 ∘ ≤ β <61:8 ∘

0:0 for β ≥61:8 ∘

(
ð3Þ

To validate the used parameter space and resulting best fitting

subset, the study also collected several field samples to construct a

ground truths dataset. The samples were collected at eight field loca-

tions, as shown in Figure 1e. The sample locations were chosen based

on their proximity to the landslides that occurred during the event

T AB L E 1 List of required input and the used sources.

Source Range or constant Unit

Topographic data

Elevation model ALS data (2004) 370–2840 m

Flow direction DTM from ALS data (2004) (-) (-)

Slope DTM from ALS data (2004) 0–74 �

General soil parameters

Regolith depth Stat. model Zieher et al. (2017) 0 - 3.028 m

Background infiltration rate Zieher et al. (2017) 0.01 x Ks m�s�1

Dry bulk density soil Zieher et al. (2017) 1.84 gr�cm�3

Geotechnical parameters

Cohesion Parameter space/Triaxial shear test 0 - 18 kPa

Internal friction angle Parameter space/Triaxial shear test 21 - 39 �

Hydrological parameters

Precipitation intensity Meteorological station 0 - 36 mm�h�1

Saturated hydraulic conductivity Parameter space 1.0 �10�6 - 1.0 �10�3 m�s�1

Hydraulic diffusivity Parameter space/Oedometer test 1.0 �10�5 - 1.0 m2�s�1

Groundwater depth Zieher et al. (2017) Set to regolith depth m

Additional parameters

Root cohesion Zieher et al. (2017) 2.5 kPa

Tree surcharge Zieher et al. (2017) 2.5 kPa

Rooting depth Zieher et al. (2017) 1 m

DE VUGT ET AL. 7
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and the goal to capture varying lithologies. The final sample locations

cover the lodgement till, the Texel unit and the debris cone deposits.

At the sample locations, disturbed soil samples were collected from

1-m-deep soil pits. This material was analysed in the laboratory to

determine the grain size distribution with the use of sieving and sedi-

mentation methods and the shear strength of the soil (cohesion and

friction angle) with consolidated drained triaxial shear tests on

reconstructed samples.

The model also requires information about the hydraulic diffusiv-

ity (D0). However, measuring the diffusivity in the lab or in the field is

very difficult and comes with high uncertainties (Berti &

Simoni, 2010). Instead, the hydraulic diffusivity can be determined

using the specific storage (Ss) and the saturated hydraulic conductivity

(Ksat) using Equation (4).

D0 ¼Ksat

Ss
ð4Þ

The specific storage is easier to measure in the laboratory and

can be determined from the soil compressibility using Equation (5).

Ss ¼ ρw �g � ðαsþn �βwÞ, ð5Þ

where ρw is the density of water (kg�m�3), g is the gravitational accel-

eration (9.81 m�s�2), n is the soil porosity (-), βw is the compressibility

of water (4.4 �10�10 m2�N�1) and αs is the compressibility of the soil

(m2�N�1) (Rowe & Barden, 1966). The disturbed samples from the

soil pits were therefore also analysed with oedometer tests to deter-

mine their compressibility (Berti & Simoni, 2010; Zieher et al., 2017).

Determining the saturated hydraulic conductivity in the laboratory

comes with similar uncertainty issues as the hydraulic diffusivity

(Berti & Simoni, 2010) and was therefore not measured in this study

but calibrated. However, the calibration of the saturated hydraulic

conductivity was tested against the predictions of the saturated

hydraulic conductivity with several pedotransfer functions from the

“LWFBrook90R” R library package (Puhlmann & von Wilpert, 2012;

Schmidt-Walter et al., 2023; Wösten et al., 1999) and the Rosetta3

model (Zhang & Schaap, 2017).

Besides the disturbed samples from the soil pits, several ring sam-

ples were also taken at different depths in the back-wall of the soil

pits (at depths of 50 to 100 cm below the surface). These samples

were used to determine the dry bulk density and soil moisture content

of the soil using the oven-drying method.

3.4 | Parameter space and calibration methods

The parameter space varies the internal friction angle, soil cohesion,

saturated hydraulic conductivity and specific storage. These parame-

ters were chosen to be included in the space after a sensitivity analy-

sis of TRIGRS in the Laternser valley showed that these parameters

were the most sensitive parameters in the model. The ranges of the

parameter values were determined using ranges described in literature

for the soils occurring in the Laternser valley and after analysis of soil

samples taken in the valley (Zieher et al., 2017). The used values are

given in Table 2.

To test the model runs of the full parameter space and to select

the best fitting model runs, Zieher et al. (2017) developed the follow-

ing ruleset to validate the timing of landslide initiation in the model

runs:

1. The initial conditions at the start of the model run should result in

predicted stable slopes (FOS≥1:0).

2. Most shallow landslides should be triggered after the highest pre-

cipitation intensity occurred (FOS<1:0).

3. The 25 best fitting model runs are selected by taking the 25 model

runs with the lowest Distance to the Perfect Classification (D2PC)

values.

Formetta et al. (2016) showed that the D2PC is a good indicator

for the performance of a model in the ROC (receiver operator curve)

space. The D2PC was, therefore, used as main performance indicator

in both study areas. The D2PC gives equal weight to the true positive

rate (TPR) and the true negative rate (TNR) and is calculated using

Equation (6).

D2PC¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�TNRÞ2þð1�TPRÞ2

q
ð6Þ

To further investigate the similarities between the best fitting

parameter combinations for the Passeier valley and the Laternser val-

ley, the study also looked at the 100 best fitting combinations for

each study area.

4 | RESULTS

4.1 | Results of the soil sample analysis

The analysis of the soil samples comprised determining the grain size

distribution, the shear strength, the soil compressibility with oedometer

tests, the dry bulk density and soil moisture content. Figure 6 shows

the results of the grain size distribution analysis and the oedometer

tests. The graph from the grain size distribution analysis (Figure 6a)

shows that the variance in soil type in the study area is low. The sam-

ples are all well-distributed and show a typical grain size distribution

for a lodgement till soil (Bell, 2002). The results of the grain size distri-

bution were used with the found dry bulk density values of the soil

samples to predict the saturated hydraulic conductivity with several

pedotransfer functions. The results of this analysis are given in

Figure 7. The graph in Figure 6b shows the measured compressibilities

of the soil samples with the oedometer tests. These compressibility

values were used with Equation (5) to determine the specific storage of

the soil. When the compressibility of the soil samples is extrapolated to

a lower pore pressure value of 2 kPa that naturally occurs in an aquifer

(i.e. a fully saturated soil) at 2 m depth (Berti & Simoni, 2010), the esti-

mated specific storage ranges from 0.003 to 0.012 m�1. The results

from the triaxial shear tests on the soil samples are given in Table 3.

The cohesion values of the soil samples range between 0 and 1.5 kPa,

while the internal friction angles of the samples range between 31.5�

and 35�. Table 3 also lists the values found for the dry bulk density and

soil moisture content of the soil samples.
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4.2 | Performance of the full parameter space

Figure 8 shows the performance of all parameter combinations in the

parameter space and the performance of the remaining parameter

combinations after each consecutive filtering rule (see Section 3.4).

After the first filtering rule, where all model runs predicting unstable

conditions at the first timestep are filtered out, only 7900 parameter

combinations remain (Figure 8b). With the second filtering rule, where

all remaining model runs where most of the landslides occur before

the peak of the precipitation event are filtered out, 7175 parameter

combinations remain (Figure 8c).

The performance of the 25 best fitting parameter combinations

is good, as is shown by their position in the ROC space (Figure 8d)

and their D2PC values (Table 4). A boxplot of the distribution of

the D2PC values within the 25 best fitting combinations is given

in Figure 11c. The best model run has a D2PC value of 0.37, with

a TPR of 71.9% and a TNR of 77.6%. Table 4 shows that the

maximum TPR decreases with the consecutive filtering rules,

while the minimum TNR increases. The minimum D2PC remains

constant.

T AB L E 2 Parameter values used in the full parameter space.

Cohesion (kPa) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Internal friction
angle

(�) 21 23 25 27 29 31 33 35 37 39

Sat. hydraulic
conductivity

(m�s�1) 1.0

�10�6

2.2

�10�6

4.6

�10�6

1.0

�10�5

2.2

�10�5

4.6

�10�5

1.0

�10�4

2.2

�10�4

4.6

�10�4

1.0

�10�3

Specific storage (m�1) 1.0

�10�3

1.7

�10�3

2.8

�10�3

4.6

�10�3

7.7

�10�3

1.3

�10�2

2.2

�10�2

3.6

�10�2

6.0

�10�2

1.0

�10�1

F I GU R E 6 Grainsize analysis and oedometer results of the soil sample analysis in the Passeier valley. The grain size distribution of the
samples is given in (a) with the grain size distributions found in the Laternser valley in grey. The found compressibility with the oedometer tests is
given in (b).

F I GU R E 7 Distribution of the saturated hydraulic conductivity in
the 25 best performing parameter combinations (in red) and the
resulting distribution when timing is not enforced (in dotted red). The
blue boxplots show the distributions derived with the pedotransfer

functions of the Puhlmann (Puhlmann & von Wilpert, 2012), the
Wösten (Wösten et al., 1999) and the Rossetta3 (Zhang &
Schaap, 2017) models. The black boxplot shows the distribution for
sandy loam soils from the UNSODA soil database (Nemes et al., 2001).
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4.3 | Best performing parameter combinations

The parameter values occurring in the 25 best fitting parameter com-

binations are visualised using frequency scatter plots in Figure 9a,b.

The figure shows that the best fitting combinations contain cohesion

values of 6 and 8 kPa and internal friction angle values of 21� to 31�.

With regard to the calibrated hydraulic parameters, the specific

storage ranges between 0.001 and 0.013 m�1 and the saturated

hydraulic conductivity between 1.0 �10�6 and 2.2 �10�4 m�s�1 (see

also Figure 7).

The predicted slope failures in the 25 best fitting parameter com-

binations have also been used to create an average predicted stability

map. The result is shown in Figure 10. This map shows how often

each raster cell was predicted as unstable in each of the 25 best fitting

T AB L E 3 Found parameter values from the laboratory tests on the soil samples from the Passeier valley.

Parameter Unit PAS 003 PAS 062 PAS 081 PAS 101 PAS 114 PAS 115 PAS 134 PAS 204

Soil moisture - 0.11 -a-a 0.21 -a 0.07 0.03 0.18 0.11

Dry bulk density gr�cm�3 1.16 -a 1.66 -a 1.46 1.50 1.71 1.25

Cohesion kPa 0.0 0.0 0.0 1.5 1.0 0.0 0.0 0.0

Internal friction angle � 32.5 34.5 35 32.5 31.5 32.5 31.5 33.5

Compressibility (As) 10�4 m2�kN�1 8.62 12.22 9.96 9.90 3.45 5.13 10.72 8.87

Specific storage (Ss) 10�3 m�1 8.46 12.01 9.78 9.72 3.39 5.03 10.52 8.71

aNo ring samples were taken at this location.

F I GU R E 8 Performance of the model runs in the parameter space over time and in the receiver operator curve (ROC) space for the Passeier
valley, where (a) shows the performance of all parameter combinations, (b) shows the parameter combinations remaining after filtering rule 1 (see
Section 3.4), (c) shows the parameter combinations remaining after filtering rule 2 (see Section 3.4) and (d) shows the 25 best performing
parameter combinations out of the model runs in (c).

T AB L E 4 Performance metrics for the model runs in the Passeier valley of the timestep with the maximum predicted failure in each model
run.

Full ensemble Stable at t¼0 Peak TPR after t¼6 h 25 best combinations

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

TPR 0.0% 98.2% 0.0% 94.5% 0.0% 83.6% 65.5% 74.5%

TNR 6.6% 100% 28.6% 100% 37.4% 100% 68.2% 80.4%

FPR 0.0% 93.4% 0.0% 71.4% 0.0% 62.6% 19.6% 31.8%

FNR 1.8% 100% 5.5% 100% 16.4% 100% 25.5% 34.5%

D2PC 0.37 1.00 0.37 1.00 0.37 1.00 0.37 0.41

Abbreviations: D2PC, Distance to the Perfect Classification; TNR, true negative rate; TPR, true positive rate.
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model runs. The map shows a distinct spatial pattern in the model pre-

diction, where the eastern lower part of the catchment is less suscep-

tible to slope failure in the model and the upper western part of the

catchment shows a high susceptibility to failure. This pattern coin-

cides with the forest mask (Figure 1d), which covers the eastern area

with lower predicted susceptibility to slope failure. The locations with

a higher susceptibility coincide with the slope values of around 26� to

44� or regolith depth values of around 0.9 to 1.8 m; see also Figure 1c

for the used slope angle map. Besides this, the map also shows high

average stability values for the cells that were predicted as unstable.

This indicates that the individual model runs within the calibrated

parameter ensemble showed very similar spatial patterns of predicted

slope failure.

4.4 | Comparison parameter ensembles of both
study areas

The performance of the parameter ensemble in the Laternser valley is

given in Table 5. Comparing the performances of the parameter

ensemble in the Laternser valley and the ensemble derived in the Pas-

seier valley shows that the calibration of the Passeier valley performs

better than the calibration in the Laternser valley. The D2PC values of

all the best model runs of the Passeier valley are lower and thus better

than the lowest D2PC value of the model runs of the Laternser valley

(see also Figures 11c,f). The TNR for the best model runs in the Pas-

seier valley is lower than the best model runs in the Laternser valley.

However, the TPR is generally higher for the best model runs in the

Passeier valley, which causes the lower D2PC values. Both the TNR

and TPR values for the best model runs in the Laternser valley show a

larger spread.

A comparison of the frequency scatter plots of the best fitting

parameter combinations for both study areas in Figure 9a,b and 9c,d

shows very similar calibrations of the geotechnical parameter values.

The best fitting cohesion and internal friction angle values for the Pas-

seier valley are a subset of the calibrated geotechnical parameter

values in the Laternser valley. The spread of the geotechnical parame-

ters is slightly smaller in the best fitting combinations for the Passeier

valley. In contrast, the comparison of the calibrated hydraulic parame-

ters shows a very distinct difference in the best fitting combinations

for both study areas. The calibrated saturated hydraulic conductivity

values are on average higher in the Passeier valley, with a median sat-

urated hydraulic conductivity of 1.0 �10�4 m�s�1 against a median

value in the Laternser valley of 4.64 �10�6 m�s�1. The spread of the

best fitting hydraulic conductivity for the Passeier valley is also larger

than in the calibration of the Laternser valley. The standard deviation

of the calibrated saturated hydraulic conductivity in the Passeier val-

ley is 7.97 �10�5 m�s�1 and 4.18 �10�5 m�s�1 for the calibration in

the Laternser valley. The values of the specific storage are generally

much lower in the best fitting combinations for the Passeier valley.

F I GU R E 9 Frequency scatter plots of the unique geotechnical (a, c) and hydraulic parameter values (b, d) occurring within the 25 best fitting
parameter combinations for the Passeier valley (a, b) and the Laternser valley (c, d). The blue crosses show the internal friction angle and cohesion
values found with the triaxial shear tests, and blue range bar indicates the range of the specific storage that was derived with the oedometer tests
on the soil samples in the Passeier valley.
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The median specific storage in the calibration of the Passeier valley is

0.003 m�1 against 0.035 m�1 in the calibration of the Laternser valley.

The spread of the specific storage in the Passeier valley is narrower

than in the calibration for the Laternser valley, with a standard devia-

tion of 0.004 m�1 for the Passeier valley against 0.020 m�1 for the

Laternser valley.

The comparison of the 100 best fitting parameter combinations

for each study area is shown in Figure 11. For the Passeier valley,

enlarging the best fitting ensemble to 100 model runs extends the

range of the best fitting cohesion to lower values and the range of

the internal fiction angle values to higher values (Figures 11a and 9a).

Due to this, the distributions of the calibrated geotechnical parame-

ters for both study areas become even more similar. For the hydraulic

parameters, the distribution does not change much from the selection

of the 25 best fitting model runs (Figures 11b and 9b). For the Pas-

seier valley, the median of the saturated hydraulic conductivity

remains the same. However, the maximum saturated hydraulic con-

ductivity increases to 1.1 �10�3 m�s�1. The range of specific storage

is extended with larger values and the median value of the specific

storage increases to 0.005 m�s�1. For the Laternser valley, increasing

F I G UR E 1 0 Map of average stability
constructed with the 25 best fitting
parameter combinations for the Passeier
valley.

T AB L E 5 Performance metrics for model runs in the Laternser valley of the timestep with the maximum predicted failure in each model run
(data taken from Zieher et al., 2017).

Full ensemble Stable at t¼0 Peak TPR after t¼6h 25 best combinations

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

TPR 0.0% 99.4% 0.0% 90.4% 0.3% 70.5% 49.2% 70.5%

TNR 10.5% 100.0% 57.4% 100.0% 71.0% 100.0% 71.0% 90.2%

FPR 0.0% 89.5% 0.0% 42.6% 0.0% 29.0% 9.8% 29.0%

FNR 0.6% 100.0% 9.6% 100.0% 29.5% 99.7% 29.5% 50.8%

D2PC 0.34 1.00 0.34 1.00 0.41 1.00 0.41 0.53

Abbreviations: D2PC, Distance to the Perfect Classification; TNR, true negative rate; TPR, true positive rate.
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the number of runs for the calibration impacts the distributions of the

calibrated parameter combinations less than for the Passeier valley.

The median hydraulic conductivity in the calibration for the Laternser

valley increases to 1.0 �10�5 m�s�1. The range of the specific storage

is extended to lower values, but the median specific storage stays

the same.

Figure 11c shows that the performance of the calibrated ensem-

ble does not change much for the Passeier valley when the number of

selected model runs is increased to 100. The maximum D2PC value

increases from 0.41 to 0.45 and the median from 0.40 to 0.42. The

performance of the model runs in the Laternser valley changes more

drastically, with the maximum D2PC value increasing from 0.53 to

0.61 and the median from 0.41 to 0.55.

5 | DISCUSSION

5.1 | Discussion laboratory results

The grain size analysis of the soil samples collected in the Passeier val-

ley showed that all samples fall in the United States Department of

Agriculture (USDA) soil texture class sandy loam and showed very lit-

tle variation in the grain size distributions of the soil samples. The tri-

axial shear tests and oedometer tests also showed a very narrow

distribution in the found cohesion, internal friction angle and specific

storage values, even though the samples were taken from several dif-

ferent lithologies. When the found geotechnical soil parameters are

compared with values reported in literature, they agree with the

values reported in other studies on sandy loam type soils.

The reported values of the internal friction angle for these types of

soil ranges between 27� and 34� (Carter & Bentley, 2016). The range

of the reported soil cohesion for sandy loam type soils is relatively

large between 0 and 50 kPa and is heavily dependent on the soil

moisture content, fine particle content and the compaction of the

soil (Naval Facilities Engineering Command, 1986; Matsushi &

Matsukura, 2006). Validating the specific storage was not possible, as

the only values reported in literature are on aquifers located at much

larger depths than the 2 m considered in this study.

Zieher et al. (2017) report a higher variance within the soil sam-

ples taken in the Laternser valley (see Figure 6). The grain size distri-

butions of the samples in the Laternser valley are also well-distributed

and comparable with the lodgment till soils reported in Bell (2002).

However, almost all samples from the Passeier valley are sandier than

those from the Laternser valley and show a lower clay content. With

regard to the geotechnical parameters, the found cohesion and inter-

nal friction angle values in the Laternser valley again show a higher

variation. The geotechnical parameters found in the Passeier valley do

fall in the same range; however, the cohesion values for the samples

from the Laternser valley are higher and the internal friction angle

values are lower. Besides the higher clay content of the soils in the

Laternser valley, this difference in shear strength properties in both

study areas could also be caused by the uncertainty of shear strength

values that are derived with the triaxial shear tests (Schneider-Muntau

et al., 2018; Schneider-Muntau et al., 2021). The specific storage

reported in Zieher et al. (2017) is a factor 10 higher than the values

found in the Passeier valley. This is in agreement with the fact that

the sampled soils in the Passeier valley are sandier. The specific stor-

age is inversely related to the hydraulic diffusivity which increases

F I GU R E 1 1 Frequency scatter plots of the 100 best fitting parameter combinations for the Passeier valley (a, b) and the Laternser valley (d,
e). The boxplots on the right show the distribution of the D2PC values within the 25 and 100 best parameter combinations for the Passeier valley
(c) and the Laternser valley (f).

DE VUGT ET AL. 13

 10969837, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5770 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with grain size (Dingman, 2015). The higher diffusivity values in the

Passeier valley mean that the groundwater recharge and in turn

the rise of pore pressure respond faster and more intensely to

infiltration.

5.2 | Model performance and resulting calibrated
parameter ensemble

The D2PC values in Table 4 show that the full parameter space taken

from Zieher et al. (2017) does contain a subsample of parameter com-

binations that performs well for the August 2016 event in the Pas-

seier valley. Compared with other studies, the minimum D2PC value

of the best performing combinations in the Passeier valley is higher

than what is reported in these studies (Bordoni et al., 2015; Ciurleo

et al., 2019; Salciarini et al., 2006). These studies report both higher

TPRs and TNRs. However, it should be considered with this compari-

son that both Bordoni et al. (2015) and Salciarini et al. (2006) used

spatially variable geotechnical input for their models, based on pedo-

logical or lithological units. Salciarini et al. (2006) showed that the use

of spatially variable input significantly improved the performance of

TRIGRS. Besides the spatially variable input, Salciarini et al. (2006) and

Ciurleo et al. (2019) also include a significant amount of trivial areas,

that is, flat areas that are inherently stable. Steger and Glade (2017)

showed that this can drastically improve the assessed model perfor-

mance, since the model will always correctly predict these inherently

stable areas as stable, increasing the TNR of the model performance.

Considering that the TPR of the best performing model runs (ordered

by D2PC) is not higher than 85% in both studies, the minimum D2PC

values might be more similar to the performance of TRIGRS in the

Passeier valley when the trivial areas are omitted in the validations of

the models. For example, for the Passeier valley, excluding the area

with a slope ≤ 10� in the model performance would result in a best

model run with a TPR of 72.2% and a TNR of 76.4%. As expected, the

TNR thus slightly drops. The TPR slightly increases, since there are

one or two landslides in the inventory located in cells with a slope

angle ≤ 10�. Lastly, only a few studies explicitly consider the timing

of landslide initiation in the model calibration of TRIGRS (Bordoni

et al., 2015). However, as Figure 8 and the results from Zieher et al.

(2017) show, the model calibration requires information on the timing

of landslide initiation and is very sensitive to how the timing of land-

slide initiation is handled. For the Passeier valley, the calibration of

the parameter ensemble, while disregarding the timing of landslide ini-

tiation, would reduce the range of the geotechnical parameters to a

single parameter combination (8 kPa and 21�). The range of the

hydraulic parameters would not change, but the median saturated

hydraulic conductivity would decrease to 1.0 �10�5 m�s�1 (see also

Figure 7). For the Laternser valley, the minimum D2PC value even

decreases from 0.41 to 0.34 (see Table 5).

Regarding the parameter ensemble for the Passeier valley, the

calibrated hydraulic parameters were tested with values derived using

laboratory tests, pedotransfer functions and values reported in litera-

ture. The range of the specific storage from the oedometer tests falls

within the range of specific storage values in the best fitting parame-

ter ensemble. The range of calibrated saturated hydraulic conductivity

values was not validated with a laboratory test but with literature

values and values derived using pedotransfer functions. The values

from the pedotransfer functions predict saturated hydraulic conduc-

tivity values that are approximately a factor 10 lower (ranging from

1.13 �10�5 m�s�1 to 1.17 �10�7 m�s�1) than the values derived in

the calibration of the hydraulic conductivity (see also Figure 7). How-

ever, the values from the pedotransfer functions were derived with-

out consideration of the structure of the soil, such as the occurrence

of macropores, and could therefore underestimate the in situ satu-

rated hydraulic conductivity (Fusco et al., 2021; Fatichi et al., 2020;

Zhang & Schaap, 2019). Fatichi et al. (2020) also reported a factor 3–

20 difference between saturated hydraulic conductivity values

derived with the consideration of soil structural information

and values derived without consideration of the soil structure, which

would fit the factor 10 difference found in this study. The range

of values reported in literature for sandy loam soils also overlaps

with the range of calibrated hydraulic conductivity values (2.74

�10�6 m�s�1 to 5.74 �10�5 m�s�1) (Nemes et al., 2001) (see also

Figure 7).

A similar fit was not found for the calibrated geotechnical param-

eter values and the geotechnical values from the laboratory tests. The

calibrated values of the effective cohesion are higher, and the values

for the internal friction angle are on average lower than those derived

from the triaxial shear tests. An important reason for this is the use of

disturbed samples. A similar discrepancy between values of cohesion

obtained with laboratory triaxial shear tests and in situ bore-hole shear

tests was also reported by Rinaldi et al. (2004). In addition to this, the

failure envelopes found with the laboratory tests were determined

using a limited range of applied loads, due to the technical constraints

of the triaxial shear test. The stress loads in this limited range were

higher (>50 kPa) than the stresses that naturally occur in shallow land-

slides (approximately 20 kPa). This results in the extrapolation of

lower cohesion and higher internal friction angle values from the triax-

ial shear tests (Schneider-Muntau et al., 2022; Wood, 1990). Besides

this, Schneider-Muntau et al. (2018) and Schneider-Muntau et al.

(2021) found that measuring shear strength using a standard triaxial

shear test comes with large uncertainties. Lastly, the discrepancy

between the laboratory values and calibrated values can also be

attributed to the use of spatially homogeneous model input, which

leads to generalised values in the calibration.

5.3 | Comparison parameter ensembles both
study areas

A comparison of the D2PC values of the calibration in both study

areas shows that the performance of the parameter ensembles is very

similar (min. D2PC of 0.37 for the Passeier and 0.41 for the Laternser

valley). However, from the distributions of the D2PC values within

the parameter ensembles (Figure 11c,f), it can be concluded that the

TRIGRS setup using initially wet conditions with homogeneous input

works better in the Passeier valley. The distributions show that almost

all model runs within the final parameter ensemble of the Passeier val-

ley (max. D2PC: 0.41) outperform the model runs in the final parame-

ter ensemble of the Laternser valley (min. D2PC: 0.41). It could be

that the use of homogeneous parameter values works better in the

Passeier valley, because the soil in the Passeier is more homogeneous

than in the Laternser valley. This would be in line with what was

found in the comparison of the soil samples from both study areas.
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The ensemble of the Passeier valley is in general more conserva-

tive than the ensemble of the Laternser valley, as the FPR and TPR

values are overall higher (Passeier: min. FPR 20%, max. TPR 75%,

Laternser: min. FPR 10%, max. TPR 71%) (Figure 12). Thus, the cali-

brated model runs of the Laternser valley generally predict more sta-

ble scenarios than the model runs of the Passeier valley. Since the

slopes in the Laternser valley are less steep than in the Passeier valley,

it is expected that the infinite slope method predicts less slope failure

in the Laternser valley when the other parameter values are kept con-

stant. Besides this, the Laternser valley has a larger trivial area, where

the slope angle is half the minimum internal friction angle in the

parameter space (10�). In the Laternser valley, this area amounts to

7.2% of the study area, while the trivial area amounts to 4.9% in the

Passeier valley. This larger trivial area means that the model runs will

automatically have a higher TNR in the Laternser valley, since these

trivial areas are unconditionally stable with the infinite slope method.

For further improvements in model performance in the Passeier

valley, the focus should lie on the incorporation of spatial variability in

the model input. Several studies using TRIGRS have incorporated the

spatial variability using the lithology map as basis for the zonation of

the model input (Bordoni et al., 2015; Ciurleo et al., 2019). To account

for the variation of the soil properties within the lithological classes

and the uncertainties of their values, these approaches could be fur-

ther improved with application of probabilistic methods (Raia et al.,

2014; Rossi et al., 2013; Salciarini et al., 2017). However, a prerequi-

site for these approaches is detailed information on the spatial distri-

bution of the soil parameters. The homogeneous results from the

laboratory indicate that the distribution of soil properties in the Pas-

seier valley is not solely dependent on the underlying lithology. For

the Passeier valley, it will, therefore, first be required to derive a zona-

tion of the soil properties for the model input. In addition to this, the

model would also benefit from a more detailed assessment of the reg-

olith depth model, since this is the most sensitive parameter in

the infinite slope method (Kuriakose et al., 2009; Zieher et al., 2017).

However, previous studies have also shown that the construction of

an accurate regolith depth map is very difficult, since information on

the spatial distribution of regolith depth is often insufficiently

available and difficult to acquire (von Ruette et al., 2013; Van den

Bout et al., 2021). Efforts into the incorporation of the spatial distribu-

tion of other input datasets, such as the soil properties or precipita-

tion, should therefore not be neglected and could prove more

effective in improving the model performance.

In the comparison of the calibrated parameter values for the

Laternser valley and the Passeier valley, there were large similarities

found in the calibrated geotechnical parameter ensembles. These simi-

larities show that this calibrated geotechnical ensemble is transferable

across the two valleys and possibly applicable to other study areas.

When the lithology maps of the two study areas are compared, the

main commonality between the the two valleys is their extensive

lodgement till deposits. It can thus be expected that this ensemble

(see Figure 9) is also applicable for calibrating TRIGRS in other study

areas with extensive lodgement till deposits. de Lima Neves Seefelder

et al. (2017), who investigated the calibration of the infinite slope

method for a study area in Brazil, also report very similar calibrated

parameter combinations for the geotechnical parameter values. It

would therefore be interesting to investigate if the calibration of TRI-

GRS in significantly different study areas also results in similar geo-

technical parameter calibrations. The comparison of the calibrated

parameter ensembles found no similarities in the calibrated hydraulic

parameter values. The calibrations instead reflected the more promi-

nent soil types in the two study areas. It seems that these parameters

are more sensitive to different soil types. In addition, the hydraulic

parameters mainly force the timing of landslide initiation predicted by

the TRIGRS model. Their calibration is, therefore, dependent on the

temporal pattern of the modelled precipitation event and how

the timing of landslide initiation is handled in the temporal calibration

of the model. Since the precipitation events in the Passeier and

Laternser valleys are distinctly different, this difference is reflected in

the calibrated hydraulic parameter ensembles.

Lastly, the large variances in the calibrated parameter ensembles

in combination with the high values in the average stability maps in

both study areas indicate equifinality in the calibration of TRIGRS.

With this equifinality, it is uncertain if a calibration of TRIGRS will

work on different storm events (Brazier et al., 2000). This uncertainty

F I GU R E 1 2 Predictive rates of the model runs in the calibrated ensembles of the Passeier valley (a) and the Laternser valley (b). The colours

indicate the true positive rate (TPR) of the individual model runs.
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adds to the uncertainty from the assumptions made for the timing of

landslide initiation and the uncertainties of general assumptions, such

as those made for the initial conditions of the model. A different

storm event could not be tested for the Passeier valley, since there is

no record of other precipitation events causing landslides in the study

area. However, the study by Zieher et al. (2017) showed that the cali-

bration of the Laternser valley performed well for another precipita-

tion event. The equifinality and uncertainties in the calibration of the

model stress the importance of using of parameter ensembles in

the calibration of TRIGRS. Not only to account for the inherent vari-

ance of the parameters and uncertainties that come with them but

also because of the resulting higher predictive capability of the model.

6 | CONCLUSIONS

In this study, the calibrations of the dynamic physically based slope

stability model TRIGRS in two study areas were compared with each

other in terms of their model performance and the values occurring

within the calibrated parameter ensembles. The goal was to find an

overlapping parameter ensemble that could be used in both study

areas, and potentially other study areas, without losing model perfor-

mance. The comparison of the model performances showed that the

methods from Zieher et al. (2017) can be used to derive a well-

performing parameter ensemble for the Passeier valley for the assess-

ment of landslide susceptibility during the August 2016 event. The

calibrated parameter ensemble of the Passeier valley slightly outper-

forms the calibration of the Laternser valley. Compared with other

studies using a setup of TRIGRS with spatially homogeneous input,

the calibrated model in the Passeier valley performs similarly. How-

ever, compared with studies using spatially variable input, the perfor-

mance of the model setup in the Passeier valley is slightly worse.

The study also investigated the validity of the parameter values in

the calibrated parameter ensemble for the Passeier valley. This inves-

tigation showed that the calibrated hydraulic parameters fit with

values from laboratory tests on soil samples from the Passeier valley

and the values found for these parameters in literature. For the geo-

technical parameters, a discrepancy was found between the labora-

tory values and the calibrated values. This can be explained with the

uncertainties of the values found in the triaxial shear tests and the use

of a homogeneous model setup. However, this finding does stress the

importance of the use of parameter ensembles for the input of physi-

cally based methods, since it shows that the values from laboratory

tests cannot always be used directly in physically based models.

The comparison of the parameter values within the calibrated

parameter ensembles of the Passeier valley and the Laternser valley

showed that a small parameter space exists for the geotechnical

parameters that can be applied to both study areas without losing

model performance. For the hydraulic parameter ensemble, it does

not seem possible that a small spatially transferable parameter space

can be constructed. The comparison of the calibrated ensemble in the

Passeier valley and in the Laternser valley showed that these parame-

ters are more sensitive to different soil types than the geotechnical

parameters. In addition, the difference in the calibration of the

hydraulic parameters is also caused by the distinct differences in

the precipitation events in the Passeier and Laternser valleys. The

hydraulic parameters drive the temporal response of the slope

stability in the model output. The differences in the precipitation

events are, therefore, reflected in the calibrated hydraulic parameter

ensemble.

Based on the results from this study, the authors recommend the

use of a similar homogenous setup and the found transferable set of

strength parameter values (cohesion and internal friction angle) for a

faster calibration of the model TRIGRS in other study areas with

extensive lodgement till deposits when limited information on the

spatial distribution of the soil parameters is available. The hydraulic

parameters from this study cannot be transferred and should there-

fore be calibrated to the specific soil types of the study area. For the

specific storage values, the calibration can be determined using

oedometer tests. For the calibration of the saturated hydraulic con-

ductivity, the study found a discrepancy between the calibrated

values and the values derived from pedotransfer functions. The cali-

bration of the saturated hydraulic conductivity can be derived from

the range of values used in the full parameter space of this study and

may yield better results than taking parameter values from

pedotransfer functions. Lastly, the results from the study also show

that it is important that detailed information on the timing of landslide

initiation is available for the calibration of the hydraulic parameters

and that this information is used to explicitly enforce this timing in the

model prediction.
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