22 research outputs found

    Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing

    Get PDF
    Transcriptional silencing is a major cause for the inactivation of tumor suppressor genes, however, the underlying mechanisms are only poorly understood. The EPHB2 gene encodes a receptor tyrosine kinase that controls epithelial cell migration and allocation in intestinal crypts. Through its ability to restrict cell spreading, EPHB2 functions as a tumor suppressor in colorectal cancer whose expression is frequently lost as tumors progress to the carcinoma stage. Previously we reported that EPHB2 expression depends on a transcriptional enhancer whose activity is diminished in EPHB2 non-expressing cells. Here we investigated the mechanisms that lead to EPHB2 enhancer inactivation. We show that expression of EPHB2 and SNAIL1 - an inducer of epithelial-mesenchymal transition (EMT) - is anti-correlated in colorectal cancer cell lines and tumors. In a cellular model of Snail1-induced EMT, we observe that features of active chromatin at the EPHB2 enhancer are diminished upon expression of murine Snail1. We identify the transcription factors FOXA1, MYB, CDX2 and TCF7L2 as EPHB2 enhancer factors and demonstrate that Snail1 indirectly inactivates the EPHB2 enhancer by downregulation of FOXA1 and MYB. In addition, Snail1 induces the expression of Lymphoid enhancer factor 1 (LEF1) which competitively displaces TCF7L2 from the EPHB2 enhancer. In contrast to TCF7L2, however, LEF1 appears to repress the EPHB2 enhancer. Our findings underscore the importance of transcriptional enhancers for gene regulation under physiological and pathological conditions and show that SNAIL1 employs a combinatorial mechanism to inactivate the EPHB2 enhancer based on activator deprivation and competitive displacement of transcription factors

    Mechanisms of enhancer regulation

    No full text
    The generation and maintenance of intricate spatiotemporal patterns of gene expression in multicellular organisms requires the establishment of complex mechanisms of transcriptional regulation. Estimations that up to one million enhancers exist in the human genome accentuates the utmost importance of this type of cis-regulatory element for gene regulation. However, surprisingly little is known about the mechanisms used to temporarily or permanently activate or inactivate enhancers during cellular differentiation. The current work addresses the question how enhancer regulation can be achieved. Using the chemokine (C-C motif) ligand gene Ccl22 as a model, the first example is based on the question how the activation of an enhancer can be prevented in a physiological context. Ccl22 is expressed by myeloid cells, such as dendritic cells, upon exposure to inflammatory stimuli. The expression in other cell types, such as fibroblasts, is prevented by the strong accumulation of H3K9me3 at the enhancer's proximal region. This accumulation is attenuated in myeloid cells through activity of the stimulus-induced demethylase Jmjd2d. To tease out which genomic fragment or fragments in the Ccl22 locus could be responsible for the maintenance of enhancer inactivity, potentially through the recruitment of H3K9 methyltransferases, the enhancer repressing capacity of 1 kb fragments of the gene locus was analysed in retroviral reporter assays. It was found that a fragment adjacent to the Ccl22 enhancer that overlaps with a member of a subfamily of long interspersed nuclear elements (LINEs) showed strong repressive potential on a model enhancer. Subsequent retroviral reporter assays with LINEs from loci of other stimulus-dependent genes identified additional LINE fragments that exhibit strong enhancer repressive capacity. These findings suggest a mechanism for enhancer silencing involving LINEs. The second example concentrates on the inactivation of an enhancer during colorectal cancer (CRC) progression. The adenoma to carcinoma transition during CRC progression often is accompanied by a downregulation of the tumour suppressor gene EPHB2. The EMT inducing factor SNAIL1 strongly downregulated EPHB2 expression in a CRC cell model. To gain insights into the transcriptional regulation of EPHB2, potential cis-regulatory elements in the EPHB2 upstream region were analysed using reporter assays. A cell-type-specific enhancer was identified and subsequent chromatin analyses revealed a correlation between enhancer chromatin conformation and EPHB2 expression in different CRC cell lines. Additionally, the overexpression of the murine Snail1 induced chromatin changes at the EPHB2 enhancer towards a poised, transcriptionally silent chromatin conformation. Mutational analyses of the minimal enhancer region pinpointed three transcription factor binding motifs to be essential for full enhancer activity. Different binding patterns between CRC cell lines at the TCF/LEF motif were subsequently identified. Furthermore, a switch from TCF7L2 to LEF1 occupancy was found upon overexpression of Snail1 in vitro and in vivo. The generation of LS174T CRC cells overexpressing LEF1 confirmed the involvement of LEF1 in the downregulation of EPHB2 and the competitive displacement of TCF7L2. This part of the work demonstrated that the SNAIL1 induced downregulation of EPHB2 is dependent on the decommissioning of a transcriptional enhancer and led to a hypothetical model involving LEF1 and ZEB1. In summary, this work highlighted two distinct mechanisms for enhancer regulation. One mechanism is based on enhancer repressive LINE fragments that might prevent stimulus-dependent enhancer activation. In the second, enhancer silencing was shown to be based on a competitive transcription factor binding mechanism

    Current and future advances in genetic testing in systemic autoinflammatory diseases

    No full text
    Systemic autoinflammatory diseases (SAIDs) are a group of inflammatory disorders caused by dysregulation in the innate immune system that leads to enhanced immune responses. The clinical diagnosis of SAIDs can be difficult since individually these are rare diseases with considerable phenotypic overlap. Most SAIDs have a strong genetic background, but environmental and epigenetic influences can modulate the clinical phenotype. Molecular diagnosis has become essential for confirmation of clinical diagnosis. To date there are over 30 genes and a variety of modes of inheritance that have been associated with monogenic SAIDs. Mutations in the same gene can lead to very distinct phenotypes and can have different inheritance patterns. In addition, somatic mutations have been reported in several of these conditions. New genetic testing methods and databases are being developed to facilitate the molecular diagnosis of SAIDs, which is of major importance for treatment, prognosis and genetic counselling. The aim of this review is to summarize the latest advances in genetic testing for SAIDs and discuss potential obstacles that might arise during the molecular diagnosis of SAIDs

    The Pyrin Inflammasome in Health and Disease

    No full text
    The pyrin inflammasome has evolved as an innate immune sensor to detect bacterial toxin-induced Rho guanosine triphosphatase (Rho GTPase)-inactivation, a process that is similar to the "guard" mechanism in plants. Rho GTPases act as molecular switches to regulate a variety of signal transduction pathways including cytoskeletal organization. Pathogens can modulate Rho GTPase activity to suppress host immune responses such as phagocytosis. Pyrin is encoded by MEFV, the gene that is mutated in patients with familial Mediterranean fever (FMF). FMF is the prototypic autoinflammatory disease characterized by recurring short episodes of systemic inflammation and is a common disorder in many populations in the Mediterranean basin. Pyrin specifically senses modifications in the activity of the small GTPase RhoA, which binds to many effector proteins including the serine/threonine-protein kinases PKN1 and PKN2 and actin-binding proteins. RhoA activation leads to PKN-mediated phosphorylation-dependent pyrin inhibition. Conversely, pathogen virulence factors downregulate RhoA activity in a variety of ways, and these changes are detected by the pyrin inflammasome irrespective of the type of modifications. MEFV pathogenic variants favor the active state of pyrin and elicit proinflammatory cytokine release and pyroptosis. They can be inherited either as a dominant or recessive trait depending on the variant's location and effect on the protein function. Mutations in the C-terminal B30.2 domain are usually considered recessive, although heterozygotes may manifest a biochemical or even a clinical phenotype. These variants are hypomorphic in regard to their effect on intramolecular interactions, but ultimately accentuate pyrin activity. Heterozygous mutations in other domains of pyrin affect residues critical for inhibition or protein oligomerization, and lead to constitutively active inflammasome. In healthy carriers of FMF mutations who have the subclinical inflammatory phenotype, the increased activity of pyrin might have been protective against endemic infections over human history. This finding is supported by the observation of high carrier frequencies of FMF-mutations in multiple populations. The pyrin inflammasome also plays a role in mediating inflammation in other autoinflammatory diseases linked to dysregulation in the actin polymerization pathway. Therefore, the assembly of the pyrin inflammasome is initiated in response to fluctuations in cytoplasmic homeostasis and perturbations in cytoskeletal dynamics
    corecore