10 research outputs found

    Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes

    Get PDF
    International audienceWe describe version 2.0 of the chemistry-climate model (CCM) SOCOL. The new version includes fundamental changes of the transport scheme such as transporting all chemical species of the model individually and applying a family-based correction scheme for mass conservation for species of the nitrogen, chlorine and bromine groups, a revised transport scheme for ozone, furthermore more detailed halogen reaction and deposition schemes, and a new cirrus parameterisation in the tropical tropopause region. By means of these changes the model manages to overcome or considerably reduce deficiencies recently identified in SOCOL version 1.1 within the CCM Validation activity of SPARC (CCMVal). In particular, as a consequence of these changes, regional mass loss or accumulation artificially caused by the semi-Lagrangian transport scheme can be significantly reduced, leading to much more realistic distributions of the modelled chemical species, most notably of the halogens and ozone

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    Long-term changes in UT/LS ozone between the late 1970s and the 1990s deduced from the GASP and MOZAIC aircraft programs and from ozonesondes

    No full text
    International audienceWe present ozone measurements of the Global Atmospheric Sampling Program (GASP) performed from four commercial and one research aircraft in the late 1970s to compare them with respective measurements of the ongoing MOZAIC project. Multi-annual averages of UT/LS ozone were built using the aircraft data sets (1975-1979 and 1994-2001), and long-term changes between the 1970s and 1990s were derived by comparison. The data were binned relative to the dynamical tropopause to separate between UT and LS air masses. LS data were analysed using equivalent latitudes. In the UT, pronounced increases of 20-40% are found over the Middle East and South Asia in the spring and summer seasons. Increases are also found over Japan, Europe, and the eastern parts of the United States depending on season. LS ozone over northern mid- and high latitudes was found to be lower in the 1990s compared to the 1970s in all seasons of the year. In addition, a comparison with long-term changes deduced from ozonesondes is presented. The early 1970s European Brewer-Mast (BM) sonde data agree with GASP within the range of uncertainty (UT) or measured slightly less ozone (LS). In contrast, the 1990s BM sensors show consistently and significantly higher UT/LS ozone values than MOZAIC. This unequal behaviour of aircraft/sonde comparisons in the 1970s and 1990s leads to differences in the estimated long-term changes over Europe: while the comparison between GASP and MOZAIC indicates ozone changes of −5% to 10% over Europe, the sondes suggest a much larger increase of 10%-35% depending on station and season, although statistical significance is not conclusive due to data sample limitations. In contrast to the BM sondes, the Electrochemical Cell (ECC) sonde at Wallops Island, USA, measured higher UT ozone than both GASP and MOZAIC. Hence, long-term changes from GASP/MOZAIC agree within the range of uncertainty with the changes deduced from Wallops Island

    The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    Get PDF
    To date, the radiative impact of dust and the Sahar an air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected

    The Impact of Traffic Emissions on Atmospheric Ozone and OH: Results from QUANTIFY

    No full text
    o estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH of the present-day atmosphere seven different atmospheric chemistry models simulated the atmospheric composition of the year 2003. Based on newly developed global emission inventories for road, maritime and aircraft emission data sets each model performed a series of five simulations: A base scenario using the full set of emissions, three sensitivity studies with each individual sector of transport reduced by 5% and one simulation with all traffic related emissions reduced by 5%. The approach minimizes non-linearities in atmospheric chemical effects and are later scaled to 100%. The global annual mean impact of ship emissions on ozone in the boundary layer leads to an increase of ozone of 1.2%, followed by road (0.87%) and aircraft emissions (0.3%). In the upper troposphere between 200Âż300 hPa both road and ship traffic affect ozone by 1.1%, whereas aircraft emissions contribute 0.9%. However, the sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 4.0 DU and occurs over the northern subtropical Atlantic. The impact of traffic emissions on total ozone in the Southern Hemisphere is approximately half of the northern hemispheric perturbation. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine boundary layer over the Atlantic, where the effect can exceed 10% (zonal mean) which is 80% of the total traffic induced ozone perturbation. In the Southern Hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%Âż80% throughout the year (equivalent to 1Âż1.5 ppbv). Road emissions have the strongest impact on ozone in the continental boundary layer and the free troposphere in summer. They also affect the upper troposphere particularly during northern summer associated with strong convection in mid latitudes. Ozone perturbations due to road traffic show the strongest seasonal cycle in the northern troposphere, and can even change sign in the continental boundary layer during winter. The OH concentration in the boundary layer is most strongly affected by ship emissions, which has a significant influence on the lifetime of many trace gases including methane. Methane lifetime changes due to ship emissions amount to 4.1%, followed by road (1.6%) and air traffic (1.0%).JRC.H.2-Air and Climat

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland.Climate Scenarios for Switzerland CH2018 – Approach and ImplicationspublishedVersio

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    No full text
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    Increasing springtime ozone mixing ratios in the free troposphere over western North America

    No full text
    International audienceIn the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard
    corecore