536 research outputs found

    Revisiting the chain magnetism in Sr14Cu24O41: Experimental and numerical results

    Full text link
    We study the magnetism of the hole doped CuO2 spin chains in Sr14Cu24O41 by measuring the Electron Spin Resonance (ESR) and the static magnetization M in applied magnetic fields up to 14 T. In this compound, the dimerized ground state and the charge order in the chains are well established. Our experimental data suggest that at low temperatures the Curie-like increase of M as well as the occurrence of the related ESR signal are due to a small amount of paramagnetic centers which are not extrinsic defects but rather unpaired Cu spins in the chain. These observations qualitatively confirm recent ab initio calculations of the ground state properties of the CuO2 chains in Sr14Cu24O41. Our complementary quantum statistical simulations yield that the temperature and field dependence of the magnetization can be well described by an effective Heisenberg model in which the ground state configuration is composed of spin dimers, trimers, and monomers.Comment: revised versio

    Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions

    Full text link
    For the time being isotropic three-body exchange interactions are scarcely explored and mostly used as a tool for constructing various exactly solvable one-dimensional models, although, generally speaking, such competing terms in generic Heisenberg spin systems can be expected to support specific quantum effects and phases. The Heisenberg chain constructed from alternating S=1 and sigma=1/2 site spins defines a realistic prototype model admitting extra three-body exchange terms. Based on numerical density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we demonstrate that the additional isotropic three-body terms stabilize a variety of partially-polarized states as well as two specific non-magnetic states including a critical spin-liquid phase controlled by two Gaussinal conformal theories as well as a critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. Most of the established effects are related to some specific features of the three-body interaction such as the promotion of local collinear spin configurations and the enhanced tendency towards nearest-neighbor clustering of the spins. It may be expected that most of the predicted effects of the isotropic three-body interaction persist in higher space dimensions.Comment: 13 pages, 17 figures, submitte

    Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. - IX. Epicalymma bulbosa sp. nov., first record of the genus from the Red Sea

    Get PDF
    The oncaeid genus Epicalymma comprises small copepod species usually living at meso- and bathypelagic depth layers in oceanic areas. The genus had previously been assumed to be absent from the Red Sea, due to the unusually high deep-sea temperatures and salinities in this area. In the present account a new species, Epicalymma bulbosa, is described from the Red Sea, which appears to be the only representative of the genus in the region. The new species is the smallest Epicalymma species so far recorded, with a total body length of ∼0.32 and ∼0.29 mm in the female and male, respectively. Apart from its small size, it differs from all known Epicalymma species by an extremely long exopodal seta on P5 in both sexes, and by a free exopod segment of P5 and a very long and basally swollen spinule on the syncoxa of the maxilliped in the female. In contrast to other Epicalymma species, which are distributed between 500 and >2500 m depth, the new species occurred much shallower (100–750 m) in the Red Sea, which may be interpretated as an avoidance mechanism of the unfavourable environmental conditions in the deep Red Sea. The taxonomic status of the new species within the genus Epicalymma is discussed and the few available ecological data on Epicalymma species in the world ocean are summarized

    Revisiting and modeling the magnetism of hole-doped CuO_2 spin chains in Sr{14-x}Ca_xCu_{24}O_{41}

    Full text link
    Magnetization measurements of Sr{14-x}Ca_xCu_{24}O_{41} with 0 <= x <=12 in magnetic fields up to 16 T show that the low-temperature magnetic response of the CuO_2 spin chains changes strongly upon Ca doping. For x=0 quantum statistical simulations yield that the temperature and field dependence of the magnetization can be well described by an effective Heisenberg model in which the ground state configuration is composed of spin dimers, trimers, and monomers. For x>0 a constant contribution to the low-temperature magnetic susceptibility is observed which cannot be explained in terms of simple chain models. Alternative scenarios are outlined.Comment: 2 pages, submitted to the proceedings of the ICM, Kyoto, Japan, August 200

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea

    Get PDF
    The species diversity of the pelagic microcopepod family Oncaeidae collected with nets of 0.1-mm mesh size was studied at 6 stations along a west-to-east transect in the Mediterranean Sea down to a maximum depth of 1,000 m. A total of 27 species and two form variants have been identified, including three new records for the Mediterranean. In addition, about 20, as yet undescribed, new morphospecies were found (mainly from the genera Epicalymma and Triconia) which need to be examined further. The total number of identified oncaeid species was similar in the Western and Eastern Basins, but for some cooccurring sibling species, the estimated numerical dominance changed. The deep-sea fauna of Oncaeidae, studied at selected depth layers between 400 m and the near-bottom layer at >4,200 m depth in the eastern Mediterranean (Levantine Sea), showed rather constant species numbers down to ∼3,000 m depth. In the near-bottom layers, the diversity of oncaeids declined and species of Epicalymma strongly increased in numerical importance. The taxonomic status of all oncaeid species recorded earlier in the Mediterranean Sea is evaluated: 19 out of the 46 known valid oncaeid species are insufficiently described, and most of the taxonomically unresolved species (13 species) have originally been described from this area (type locality). The deficiencies in the species identification of oncaeids cast into doubt the allegedly cosmopolitan distribution of some species, in particular those of Mediterranean origin. The existing identification problems even of well-described oncaeid species are exemplified for the Oncaea mediacomplex, including O. media Giesbrecht, O. scottodicarloi Heron & Bradford-Grieve, and O. waldemari Bersano & Boxshall, which are often erroneously identified as a single species (O. media). The inadequacy in the species identification of Oncaeidae, in particular those from the Atlantic and Mediterranean, is mainly due to the lack of reliable identification keys for Oncaeidae in warm-temperate and/or tropical seas. Future efforts should be directed to the construction of identification keys that can be updated according to the latest taxonomic findings, which can be used by the non-expert as well as by the specialist. The adequate consideration of the numerous, as yet undescribed, microcopepod species in the world oceans, in particular the Oncaeidae, is a challenge for the study of the structure and function of plankton communities as well as for global biodiversity estimates

    Heat capacity uncovers physics of a frustrated spin tube

    Get PDF
    We report on refined experimental results concerning the low-temperature specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This substance turns out to be an unusually perfect spin tube system which allows to study the physics of quasi-one dimensional antiferromagnetic structures in rather general terms. An analysis of the specific heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, at somewhat elevated temperatures the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat located around 2 K. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure

    Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange

    Full text link
    In an effort to understand the low temperature behavior of recently synthesized molecular magnets we present numerical evidence for the existence of a rotational band in systems of quantum spins interacting with nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has previously been noted for ring arrays with an even number of spin sites, we find that it also applies for rings with an odd number of sites as well as for all of the polytope configurations we have investigated (tetrahedron, cube, octahedron, icosahedron, triangular prism, and axially truncated icosahedron). It is demonstrated how the rotational band levels can in many cases be accurately predicted using the underlying sublattice structure of the spin array. We illustrate how the characteristics of the rotational band can provide valuable estimates for the low temperature magnetic susceptibility.Comment: 14 pages, 7 figures, to be published in Phys. Rev.

    Наноалмазы как идеальные наноносители для циансодежащих цитостатиков

    Get PDF
    Цианосодержащие цитостатики - новый класс открытых нами лекарств, которые благодаря цианогруппам хорошо закрепляются на наноалмазах, с увеличением активности
    corecore