383 research outputs found

    Superconductivity in a Molecular Metal Cluster Compound

    Get PDF
    Compelling evidence for band-type conductivity and even bulk superconductivity below T_c≈8T\_{\text{c}}\approx 8 K has been found in 69,71^{69,71}Ga-NMR experiments in crystalline ordered, giant Ga_84\_{84} cluster-compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure

    Spektroskopischer Nachweis eines Bis(amino)silylens

    Get PDF
    The photolysis of the silicon diazide 3a in benzene solution and in an Ar matrix is described. Both irradiations cause the elimination of 3 equivalents of N2. Loss of N2 from 3a in benzene leads to the formation of the analytically investigated product or products 4 of uncertain structure. However, the matrix photolysis of 3a results in a compound which is stable up to 77 K and has been identified as the bis(amino)silylene 2 d by comparison of its IR spectra with those of the homologous Sn and Ge compond

    Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles

    Get PDF
    We report Muon Spin Relaxation studies in weak transverse fields of the superconductivity in the metal cluster compound, Ga_84\_{84}[N(SiMe_3\_{3})_2\_{2}]_20\_{20}-Li_6\_{6}Br_2\_{2}(thf)_20⋅\_{20}\cdot 2toluene. The temperature and field dependence of the muon spin relaxation rate and Knight shift clearly evidence type II bulk superconductivity below T_c≈7.8T\_{\text{c}}\approx7.8 K, with B_c1≈0.06B\_{\text{c1}}\approx 0.06 T, B_c2≈0.26B\_{\text{c2}}\approx 0.26 T, Îș∌2\kappa\sim 2 and weak flux pinning. The data are well described by the s-wave BCS model with weak electron-phonon coupling in the clean limit. A qualitative explanation for the conduction mechanism in this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page

    SPECT- and PET-Based Approaches for Noninvasive Diagnosis of Acute Renal Allograft Rejection

    Full text link
    Molecular imaging techniques such as single photon emission computed tomography (SPECT) or positron emission tomography are promising tools for noninvasive diagnosis of acute allograft rejection (AR). Given the importance of renal transplantation and the limitation of available donors, detailed analysis of factors that affect transplant survival is important. Episodes of acute allograft rejection are a negative prognostic factor for long-term graft survival. Invasive core needle biopsies are still the “goldstandard” in rejection diagnostics. Nevertheless, they are cumbersome to the patient and carry the risk of significant graft injury. Notably, they cannot be performed on patients taking anticoagulant drugs. Therefore, a noninvasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review SPECT- and PET-based approaches for noninvasive molecular imaging-based diagnostics of acute transplant rejection

    Al6H18: A baby crystal of Îł -AlH3

    Get PDF

    Spektroskopischer Nachweis eines Bis(amino)silylens

    Get PDF
    The photolysis of the silicon diazide 3a in benzene solution and in an Ar matrix is described. Both irradiations cause the elimination of 3 equivalents of N2. Loss of N2 from 3a in benzene leads to the formation of the analytically investigated product or products 4 of uncertain structure. However, the matrix photolysis of 3a results in a compound which is stable up to 77 K and has been identified as the bis(amino)silylene 2 d by comparison of its IR spectra with those of the homologous Sn and Ge compond

    Hydroxyfasudil-Mediated Inhibition of ROCK1 and ROCK2 Improves Kidney Function in Rat Renal Acute Ischemia-Reperfusion Injury

    Get PDF
    Renal ischemia-reperfusion (IR) injury (IRI) is a common and important trigger of acute renal injury (AKI). It is inevitably linked to transplantation. Involving both, the innate and the adaptive immune response, IRI causes subsequent sterile inflammation. Attraction to and transmigration of immune cells into the interstitium is associated with increased vascular permeability and loss of endothelial and tubular epithelial cell integrity. Considering the important role of cytoskeletal reorganization, mainly regulated by RhoGTPases, in the development of IRI we hypothesized that a preventive, selective inhibition of the Rho effector Rho-associated coiled coil containing protein kinase (ROCK) by hydroxyfasudil may improve renal IRI outcome. Using an IRI-based animal model of AKI in male Sprague Dawley rats, animals treated with hydroxyfasudil showed reduced proteinuria and polyuria as well as increased urine osmolarity when compared with sham-treated animals. In addition, renal perfusion (as assessed by 18F-fluoride Positron Emission Tomography (PET)), creatinine- and urea-clearances improved significantly. Moreover, endothelial leakage and renal inflammation was significantly reduced as determined by histology, 18F-fluordesoxyglucose-microautoradiography, Evans Blue, and real-time PCR analysis. We conclude from our study that ROCK-inhibition by hydroxyfasudil significantly improves kidney function in a rat model of acute renal IRI and is therefore a potential new therapeutic option in humans

    Al13H−: Hydrogen atom site selectivity and the shell model

    Get PDF
    Using a combination of anion photoelectron spectroscopy and density functional theory calculations, we explored the influence of the shell model on H atom site selectivity in Al13H−. Photoelectron spectra revealed that Al13H− has two anionic isomers and for both of them provided vertical detachment energies (VDEs). Theoretical calculations found that the structures of these anionic isomers differ by the position of the hydrogen atom. In one, the hydrogen atom is radially bonded, while in the other, hydrogen caps a triangular face. VDEs for both anionic isomers as well as other energetic relationships were also calculated. Comparison of the measured versus calculated VDE values permitted the structure of each isomer to be confirmed and correlated with its observed photoelectron spectrum. Shell model, electron-counting considerations correctly predicted the relative stabilities of the anionic isomers and identified the stable structure of neutral Al13H
    • 

    corecore