5 research outputs found

    Hearing Threshold of Korean Adolescents Associated with the Use of Personal Music Players

    Get PDF
    Purpose: Hearing loss can lead to a number of disabilities and can reduce quality of life. Noise-induced hearing losses have become more common among adolescents due to increased exposure to personal music players. We, therefore, investigated the use of personal music player among Korean adolescents and the relationship between hearing threshold and usage pattern of portable music players. Materials and Methods: A total of 490 adolescents were interviewed personally regarding their use of portable music players, including the time and type of player and the type of headphone used. Pure tone audiometry was performed in each subject. Results: Of the 490 subjects, 462 (94.3%) used personal music players and most of them have used the personal music player for 1-3 hours per day during 1-3 years. The most common type of portable music player was the MP3 player, and the most common type of headphone was the earphone (insert type). Significant elevations of hearing threshold were observed in males, in adolescents who had used portable music players for over 5 years, for those over 15 years in cumulative period and in those who had used earphones. Conclusion: Portable music players can have a deleterious effect on hearing threshold in adolescents. To preserve hearing, adolescents should avoid using portable music players for long periods of time and should avoid using earphones

    Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs

    Full text link
    Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap‐prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude‐intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2‐weeks following noise‐exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20–60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus‐specific changes were particularly prominent in hippocampal synapse‐rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus‐specific changes occurred in synapse‐rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/1/hipo23058.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/2/hipo23058_am.pd
    corecore