96 research outputs found

    Organizational, Technological and Regulatory Challenges for Realizing Electronic Government

    Get PDF
    In this paper we discuss the main challenges faced by electronic government initiatives. First, the components of and the demand for electronic government services are identified. Then we point out infrastructure requirements on the technological level for both the service providers and the customers. Organizational challenges are discussed with a focus on integration and coordination requirements. The need for regulation is shown in respect to public information access and security concerns with transaction services

    Entanglement, recoherence and information flow in an accelerated detector - quantum field system: Implications for black hole information issue

    Full text link
    We study an exactly solvable model where an uniformly accelerated detector is linearly coupled to a massless scalar field initially in the Minkowski vacuum. Using the exact correlation functions we show that as soon as the coupling is switched on one can see information flowing from the detector to the field and propagating with the radiation into null infinity. By expressing the reduced density matrix of the detector in terms of the two-point functions, we calculate the purity function in the detector and study the evolution of quantum entanglement between the detector and the field. Only in the ultraweak coupling regime could some degree of recoherence in the detector appear at late times, but never in full restoration. We explicitly show that under the most general conditions the detector never recovers its quantum coherence and the entanglement between the detector and the field remains large at late times. To the extent this model can be used as an analog to the system of a black hole interacting with a quantum field, our result seems to suggest in the prevalent non-Markovian regime, assuming unitarity for the combined system, that black hole information is not lost but transferred to the quantum field degrees of freedom. Our combined system will evolve into a highly entangled state between a remnant of large area (in Bekenstein's black hole atom analog) without any information of its initial state, and the quantum field, now imbued with complex information content not-so-easily retrievable by a local observer.Comment: 16 pages, 12 figures; minor change

    Motion of Quantized Vortices as Elementary Objects

    Full text link
    The general local, nondissipative equations of motion for a quantized vortex moving in an uncharged laboratory superfluid are derived from a relativistic, co-ordinate invariant framework, having vortices as its elementary objects in the form of stable topological excitations. This derivation is carried out for a pure superfluid with isotropic gap at the absolute zero of temperature, on the level of a hydrodynamic, collective co-ordinate description. In the formalism, we use as fundamental ingredients that particle number as well as vorticity are conserved, and that the fluid is perfect. No assumptions are involved as regards the dynamical behaviour of the order parameter. The interaction of the vortex with the background fluid, representing the Magnus force, and with itself via phonons, giving rise to the hydrodynamic vortex mass, are separated. For a description of the motion of the vortex in a dense laboratory superfluid like helium II, two limits have to be considered: The nonrelativistic limit for the superfluid background is taken, and the motion of the vortex is restricted to velocities much less than the speed of sound. The canonical structure of vortex motion in terms of the collective co-ordinate is used for the quantization of this motion.Comment: 25 pages, 4 figures, published versio

    Auto-parallel equation as Euler-Lagrange's equation in spaces with affine connections and metrics

    Full text link
    The auto-parallel equation over spaces with affine connections and metrics is considered as a result of the application of the method of Lagrangians with covariant derivatives (MLCD) on a given Lagrangian density.Comment: 19 pages, LaTe

    Flows and particles with shear-free and expansion-free velocities in (L^-_n,g)- and Weyl's spaces

    Full text link
    Conditions for the existence of flows with non-null shear-free and expansion-free velocities in spaces with affine connections and metrics are found. On their basis, generalized Weyl's spaces with shear-free and expansion-free conformal Killing vectors as velocity's vectors of spinless test particles moving in a Weyl's space are considered. The necessary and sufficient conditions are found under which a free spinless test particle could move in spaces with affine connections and metrics on a curve described by means of an auto-parallel equation. In Weyl's spaces with Weyl's covector, constructed by the use of a dilaton field, the dilaton field appears as a scaling factor for the rest mass density of the test particle. PACS numbers: 02.40.Ky, 04.20.Cv, 04.50.+h, 04.90.+eComment: 20 pages, LaTeX, to appear in Classical and Quantum Gravity. arXiv admin note: substantial text overlap with arXiv:gr-qc/001104

    First light of VLT/HiRISE: High-resolution spectroscopy of young giant exoplanets

    Get PDF
    A major endeavor of this decade is the direct characterization of young giant exoplanets at high spectral resolution to determine the composition of their atmosphere and infer their formation processes and evolution. Such a goal represents a major challenge owing to their small angular separation and luminosity contrast with respect to their parent stars. Instead of designing and implementing completely new facilities, it has been proposed to leverage the capabilities of existing instruments that offer either high-contrast imaging or high-dispersion spectroscopy by coupling them using optical fibers. In this work, we present the implementation and first on-sky results of the High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) instrument at the Very Large Telescope (VLT), which combines the exoplanet imager SPHERE with the recently upgraded high-resolution spectrograph CRIRES using single-mode fibers. The goal of HiRISE is to enable the characterization of known companions in the H band at a spectral resolution on the order of R = λ/∆λ = 100 000 in a few hours of observing time. We present the main design choices and the technical implementation of the system, which is constituted of three major parts: the fiber injection module inside of SPHERE, the fiber bundle around the telescope, and the fiber extraction module at the entrance of CRIRES. We also detail the specific calibrations required for HiRISE and the operations of the instrument for science observations. Finally, we detail the performance of the system in terms of astrometry, temporal stability, optical aberrations, and transmission, for which we report a peak value of ~3.9% based on sky measurements in median observing conditions. Finally, we report on the first astrophysical detection of HiRISE to illustrate its potential

    First light of VLT/HiRISE: High-resolution spectroscopy of young giant exoplanets

    Full text link
    A major endeavor of this decade is the direct characterization of young giant exoplanets at high spectral resolution to determine the composition of their atmosphere and infer their formation processes and evolution. Such a goal represents a major challenge owing to their small angular separation and luminosity contrast with respect to their parent stars. Instead of designing and implementing completely new facilities, it has been proposed to leverage the capabilities of existing instruments that offer either high contrast imaging or high dispersion spectroscopy, by coupling them using optical fibers. In this work we present the implementation and first on-sky results of the HiRISE instrument at the very large telescope (VLT), which combines the exoplanet imager SPHERE with the recently upgraded high resolution spectrograph CRIRES using single-mode fibers. The goal of HiRISE is to enable the characterization of known companions in the HH band, at a spectral resolution of the order of R=λ/Δλ=100000R = \lambda/\Delta\lambda = 100\,000, in a few hours of observing time. We present the main design choices and the technical implementation of the system, which is constituted of three major parts: the fiber injection module inside of SPHERE, the fiber bundle around the telescope, and the fiber extraction module at the entrance of CRIRES. We also detail the specific calibrations required for HiRISE and the operations of the instrument for science observations. Finally, we detail the performance of the system in terms of astrometry, temporal stability, optical aberrations, and transmission, for which we report a peak value of \sim3.9% based on sky measurements in median observing conditions. Finally, we report on the first astrophysical detection of HiRISE to illustrate its potential.Comment: 17 pages, 15 figures, 3 tables. Submitted to A&A on 19 September 202

    From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect

    Full text link
    Lecture at BOSS2011 on relativistic metrology, on clock synchronization, relativistic dynamics and non-inertial frames in Minkowski spacetime, on relativistic atomic physics, on ADM canonical tetrad gravity in asymptotically Minkowskian spacetimes, on the York canonical basis identifying the inertial (gauge) and tidal degrees of freedom of the gravitational field, on the Post-Minkowskian linearization in 3-orthogonal gauges, on the Post-Newtonian limit of matter Hamilton equations, on the possibility to interpret dark matter as a relativistic inertial effect connected with relativistic metrology (i.e. clock synchronization) in Einstein GR.Comment: 90 pages. Lecture at BOSS201
    corecore