47 research outputs found

    Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation

    Get PDF
    We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK

    Silicon-Organic Hybrid MZI Modulator Generating OOK, BPSK and 8-ASK Signals for up to 84 Gbit/s

    Get PDF
    We report on high-speed multilevel signal generation and arbitrary pulse shaping with silicon-organic hybrid (SOH) Mach-Zehnder interferometer (MZI) modulators. Pure phase modulation exploiting the linear electrooptic effect allows the generation of multiple modulations formats at highest speed such as 40-Gbit/s on-off-keying (OOK) and binary-phase-shift keying (BPSK) and 28-Gbd 4-ASK and 8-ASK with data rates up to 84 Gbit/s. Additionally, beside NRZ pulse shaping, for the first time, Nyquist pulse shaping with silicon modulators is demonstrated to enable multiplexing at highest spectral efficiency

    Estimation of the OSNR penalty due to in-band crosstalk on the performance of virtual carrier-assisted metropolitan OFDM systems

    Get PDF
    The impact of the in-band crosstalk on the performance of virtual carrier (VC)-assisted direct detection (DD) multi-band orthogonal frequency division multiplexing (MB-OFDM) systems was numerically assessed via Monte-Carlo simulations, by means of a single interferer and 4-ary, 16-ary and 64-ary quadrature amplitude modulation (QAM) formats in the OFDM subcarriers. It was also investigated the influences of the virtual carrier-to-band power ratio (VBPR) and the virtual carrier-to-band gap (VBG) on the DD in-band crosstalk tolerance of the OFDM receiver. It was shown the modulation format order decrease enhances the tolerance to in-band crosstalk. When the VBG is the same for both interferer and selected signal, the interferer VBPR increase is seen to lead to lower optical signal-to-noise ratio (OSNR) penalties due to in-band crosstalk. Considering that the VCs frequencies of the selected and interferer OFDM signals are equal, the increase of the interferer VBG also gives rise to lower OSNR penalties. When the interferer and selected signals bands central frequencies are the same, the change of interferer VBG can attain 11 dB less tolerance to in-band crosstalk of the VC-assisted DD OFDM system. We also evaluate the error vector magnitude (EVM) accuracy of the in-band crosstalk tolerance of the DD OFDM receiver and our results show that the EVM estimations are inaccurate.info:eu-repo/semantics/acceptedVersio

    Capacity estimates for optical transmission based on the nonlinear Fourier transform

    Get PDF
    What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km
    corecore