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Abstract: Nyquist sinc-pulse shaping provides spectral efficiencies close to 
the theoretical limit. In this paper we discuss the analogy to optical 
orthogonal frequency division multiplexing and compare both techniques 
with respect to spectral efficiency and peak to average power ratio. We then 
show that using appropriate algorithms, Nyquist pulse shaped modulation 
formats can be encoded on a single wavelength at speeds beyond 100 Gbit/s 
in real-time. Finally we discuss the proper reception of Nyquist pulses. 
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1. Introduction 

Sinc-shaped Nyquist pulses spread into adjacent time slots, but their rectangularly shaped 
spectra require only the minimum Nyquist channel bandwidth. They are well known from 
communication theory but are relatively new in optical communications. The Nyquist 
modulation format is very similar to optical orthogonal frequency division multiplexing 
(OFDM), where sinc-shaped sub-spectra extend into adjacent frequency slots, and symbols in 
time are rectangularly shaped. In the course of this paper all Nyquist pulses are sinc-shaped. 

Here, we first discuss the close relation of Nyquist pulse modulation with OFDM [1–3]. 
Both Nyquist pulse shaping and OFDM are described with a similar formalism. This way it 
will become clear that Nyquist modulation is nothing but an orthogonal time division 
multiplexing technique, much the same as OFDM is an orthogonal frequency multiplexing 
technique. Furthermore, we compare the two multiplexing methods with respect to their 
characteristics like spectral efficiency (SE) and peak-to-average power ratio (PAPR). We then 
demonstrate real-time Nyquist pulse generation for signals beyond 100 Gbit/s. This has 
become possible even with the limited speed of state-of-the art electronics [4]. In more detail, 
we generate quadrature phase shift keying (QPSK) at 56 Gbit/s and quadrature amplitude 
modulation with 16 states (16QAM) at 112 Gbit/s in combination with polarization division 
multiplexing (PDM). This results in an overall spectral efficiency of 7.5 bit/s/Hz for PDM-
16QAM. Finally the reception of Nyquist shaped pulses is discussed comparing it with the 
reception of standard non-return-to-zero (NRZ) QAM signals. 

2. Advanced filtering in optical WDM networks 

Modern optical networks rely on multi-wavelength and multi-carrier transmission systems in 
order to fully exploit the bandwidth offered by optical fibers. The ultimate target is to 
maximize the spectral efficiency, i. e., the amount of transmitted data within a given 
bandwidth [5]. In general, the maximum capacity of a channel is only limited by Shannon’s 
law. For optical communications non-linear distortions limit the ultimate channel capacity at 
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high launch powers. Thus increasing the signal to noise ratio (SNR) by increasing the signal 
power is only possible within certain limits [6, 7]. For high capacity networks, coming close 
to this so-called non-linear Shannon limit is of special interest. 

For conventional M-ary QAM signals, the spectral occupancy does not alter significantly 
when changing the number of bits b transmitted per symbol. Thus increasing the number of 
constellation points M = 2

b
 leads directly to an increase in spectral efficiency. However, 

transmitting an additional bit per symbol implies doubling the number of constellation points, 
so that for a constant average power the required signal-to-noise ratio (SNR) increases 
significantly. This is also true if the spectral efficiency is increased by polarization division 
multiplexing (PDM) or polarization switching [8]. 

 

Fig. 1. Reducing the required channel spacing in WDM systems by removing spectral portions 
outside the Nyquist bandwidth Fs through filtering. Minimum channel spacing for crosstalk 
free systems is fixed by Fs. (a) Unfiltered M-ary QAM channels with theoretically infinitely 
wide spectrum. (b) Nyquist channel center frequencies can be spaced apart by the Nyquist 
bandwidth Fs. Basically, no guard bands are required. 

Bandwidth can be saved, however, when applying advanced filtering. From signal theory 
we know that the minimum bandwidth needed to fully encode a bandwidth-limited signal is 
the Nyquist bandwidth Fs [9]. If the optimization of spectral efficiency is the ultimate target, 
all frequency components outside the Nyquist band must be removed by filters. As a 
consequence, the time domain signal changes from pulses that are clearly separated in time (e. 
g., non-return-to-zero format, NRZ) to pulses that overlap their neighbors. 

As an example, Fig. 1(a) displays the spectrum of an M-ary QAM NRZ signal for three 
different WDM channels centered at optical frequencies f0, f1, and f2. The spectra are 
significantly wider than Fs, but can be reduced to the Nyquist bandwidth without loosing any 
signal information. However, appropriate filtering is required to achieve the best possible 
transmission quality. The sinc-shaped spectrum of an NRZ signal should be filtered such that 
the resulting spectrum is of rectangular shape under the assumption that the frequency 
response of the channel is flat in the region of interest. Therefore the side lobes must be 
removed, and the spectrum within Fs must be flattened. If there are slopes in the channel’s 
frequency response, or the noise accumulated in the system is not constant over frequency, a 
pre- and de-emphasis filtering scheme should be applied. In a properly filtered WDM 
spectrum comprising the same three carrier wavelengths as in Fig. 1(a), the channels can now 
be placed next to each other located on a frequency grid the minimum spacing of which is 
dictated by the symbol rate Fs (Fig. 1(b), Nyquist-WDM [10, 11]). 

In general, the previously described filters can be implemented optically, electrically, or 
digitally. Possible implementations are shown for a software-defined transmitter, Fig. 2. 
Optical filters with a transfer function S21(f) as in Fig. 2(a) could be used. The difficulty is to 
build optical filters with frequency responses that drop significantly inside just a few MHz. 
Optical filters based on liquid crystals may offer an opportunity to perform such filtering [12]. 
Nevertheless, these filters are quite elaborate and show some penalties due to the limited 
slopes in their frequency response. Electrical filters as shown in Fig. 2(b) are another option. 
They can provide very steep slopes. A complex transmitter, however, requires two filters with 
a specific frequency transfer function depicted in Fig. 2(b). As before, these analog electrical 
filters are not easily available. Conversely, designing digital filters to be included in the 
digital signal processing (DSP) part of the transmitter [13] seems to be a suitable option to 
solve the problem. State-of-the-art software-defined optical transmitters [14] utilize DSP 
functionality which only has to be extended. Naturally, digital filtering calls for additional 
analog anti-aliasing filters to remove image spectra. These filters can be standard low-pass 
filters as any negative influence can be pre-compensated by digital filtering. Furthermore, 
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only DSP offers the flexibility to vary filter coefficients during runtime and therefore the 
capability to adapt to 

 

Fig. 2. Pre-filtering of optical M-QAM signals for generating sinc-shaped Nyquist pulses. (a) 
An optical filter can be applied to carve an ideal rectangle out of an NRZ spectrum. Such an 
optical filter requires a frequency response S21(f) that would be difficult – if not impossible – to 
realize. (b) Alternatively, two analog electrical filters can be used to form an appropriate 
output signal with an ideal rectangularly shaped spectrum. These filters would also need a non-
standard transfer function S21(f). (c) By digital filtering as a part of the digital signal processing 
(DSP) block in the transmitter one can efficiently remove redundant parts of the spectrum. 
Resulting signals show almost ideal rectangular spectra, and additional off-the-shelf analog 
electrical or optical filters can easily remove spurious spectra. 

changes in the channel response. Additionally, changing the symbol rate Fs of the digital filter 
based transmitter is achieved without changing the hardware. Analog filters are generally 
fixed with respect to their frequency responses and cannot easily be altered. 

3. Nyquist pulse modulation and OFDM: A comparison 

Nyquist pulse modulation can be derived from the well-known optical orthogonal frequency 
division multiplexing (OFDM) technique [1]. This is done by simply interchanging time and 
frequency domain when describing the signal. 

In general, an OFDM signal x(t) is an infinite sequence of temporal symbols x
(i)

(t) 
superscripted with i. Each temporal symbol consists of a superposition of N temporal 
sinusoidals with equidistant carrier frequencies fk inside a temporally rectangular window 

defining the temporal symbol length Ts. Frequency spacing Fs = fk+1 −fk = 1 / Ts and temporal 
symbol length Ts are interrelated to establish orthogonality, Eq. (13) in the Appendix. To 
simplify the discussion, we let aside a possible cyclic prefix that would reduce the symbol rate 
below Fs, and would therefore increase the temporal symbol spacing to a value larger than Ts. 
The OFDM carriers are encoded with complex coefficients cik. We find for the OFDM signal 
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The rectangular function rect(z) is 1 for |z| < 1/2 and zero otherwise, see Eq. (12) in the 
Appendix. By Fourier transforming Eq. (1) we obtain the frequency domain representation of 
the i-th temporal OFDM symbol, i. e., a set of N spectral sinc-functions centered at 
frequencies fk, 
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In contrast to OFDM, the spectrum Y(f) of a Nyquist signal is a finite sequence of N 

spectral symbols superscripted with i. Each spectral symbol consists of a superposition of 
infinitely many spectral sinusoidals with equidistant Nyquist pulse position times tk (“carrier” 
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positions) inside a spectrally rectangular window defining the spectral symbol length Fs. 

Temporal spacing Ts = tk+1 − tk = 1 / Fs and spectral symbol length Fs are interrelated to 
establish orthogonality, Eq. (14) in the Appendix. The Nyquist “carriers” are again encoded 
with complex coefficients cik. In analogy to Eq. (1) we find 
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By Fourier transforming Eq. (3) we obtain the time domain representation of the i th 
spectral Nyquist symbol, i. e., a set of infinitely many temporal sinc-functions centered at 
times tk, 
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The relations Eq. (1) - (4) are visualized in Fig. 3. The left column, Fig. 3(a) and (c), 
describes the time-frequency correspondence for OFDM, while the right column, Fig. 3(b) 
and (d), relates to Nyquist pulses. The upper rows of each section in Fig. 3 show the time 
dependency of the signals, while the lower rows refer to the corresponding spectra. 

In Fig. 3(a), three temporally sinusoidal subcarriers modulated with ci1 = ci2 = ci3 = 1 form 
a specific OFDM symbol with width Ts and positioned at t = 0. The OFDM spectrum is a 
superposition of three spectral sinc-functions located at frequencies fk-1, fk, and fk+1, which are 
separated by Fs. In Fig. 3(b), the superposition of three temporal sinc-functions is seen which 
are located at times tk-1, tk, and tk+1 and separated by Ts. These Nyquist pulses are modulated 
with ci1 = ci2 = ci3 = 1 and form a specific spectral Nyquist symbol with width Fs and position 
at f = 0. It consists of three spectrally sinusoidal Nyquist “subcarriers”. The graphs in Fig. 3(a) 
and (b) represent Eq. (1) - (4) for i = 0, i. e., for an OFDM and a Nyquist symbol positioned at 
t = 0 and f = 0, respectively. 

If we set k = 0, then each of the three OFDM or Nyquist symbols shown here consists of 
only one temporal zero-frequency (f0 = 0) or spectral zero-time (t0 = 0) “sinusoidal”, 

respectively. For OFDM, the three temporal symbols are positioned at times (i−1)Ts, iTs and (i 
+ 1)Ts, Fig. 3(c). The resulting spectrum is located within a sinc-shaped envelope having its 
first zeros at –Fs and + Fs. Due to the different positions of the temporal symbols we see three 
spectral sinusoidals within the (green) spectral envelope. For Nyquist pulses, the three 
temporal sinusoidals inside the (green) sinc-shaped pulse envelope with zeros at –Ts and + Ts 

correspond to three spectral symbols positioned at frequencies (i−1)Fs, iFs, (i + 1)Fs, Fig. 3(d). 
A schematic of OFDM signal and Nyquist pulse generation is given in Fig. 4. The left 

column, Fig. 4(a) and (c), refers to OFDM, whereas the right column, Fig. 4(b) and (d), 
describes Nyquist pulse generation. For a better understanding we set one of the summation 
variables k or i of Eq. (1) - (4) to zero while varying the other one, and we present the signal 
generation in both frequency and time domain. 

For OFDM signal generation in the frequency domain, Fig. 4(a), a real sinc-shaped 
spectrum Xk = 0(f) centered at f = 0 is shifted by a finite number of equidistant frequency steps 

kFs, k = 0…N−1. The resulting sub-spectra are modulated by complex coefficients cik. The 
total OFDM spectrum X

(0)
(f) for i = 0 is formed by superimposing all N subcarrier spectra (Σ 

stands for summation), resulting in an OFDM symbol located at t = 0 only. 
For Nyquist pulse generation in the time domain, Fig. 4(b), a real sinc-shaped impulse yk = 

0(t) centered at t = 0 is shifted by an infinite number of equidistant time steps kTs, k = −∞… + 

∞. The impulses are modulated by complex coefficients cik. The total Nyquist pulse y
(0)

(t) for i 
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= 0 is formed by superimposing all “subcarrier” pulses, resulting in a Nyquist pulse sequence 
at one carrier “frequency” f = 0 only. 

 

Fig. 3. Comparison between OFDM (left column) and Nyquist sinc-pulses (right column) in 
time and frequency domain. (a) The upper graph shows the real parts of three on-off keyed 
sinusoidal subcarriers xk(t), the sum of which represents one specific time-domain OFDM 
symbol centered at t = 0. The lower graph shows the corresponding spectra Xk(f) of the 
subcarriers centered at frequencies fk-1, fk, and fk+1. (b) The upper graph shows three Nyquist 
pulses yk(t) (“temporal subcarriers”) centered at times tk-1, tk, and tk+1. The lower graph shows 
the corresponding real parts of the spectra Yk(f) with three spectral sinusoidals, the sum of 
which represents one specific frequency-domain Nyquist symbol centered at f = 0. (c) The 
upper graph shows the envelopes (green rectangles as in Fig. 3(a) of three temporal OFDM 

symbols located at times (i−1)Ts, iTs, and (i + 1)Ts. For simplicity, each temporal OFDM 
symbol is composed of the same single zero-frequency subcarrier f0 = 0 for k = 0, The lower 
graph shows the corresponding real parts of the spectra within a sinc-shaped envelope (green). 
The three spectral sinusoidals within correspond to three temporal positions of the temporal 
OFDM symbol. (d) The upper graph shows the real parts of three Nyquist pulses within a sinc-
shaped envelope (green). The three temporal sinusoidals within correspond to three spectral 
positions of the spectral Nyquist symbols. The lower graph shows the envelopes (green 

rectangles as in Fig. 3(b) of the three spectral Nyquist symbols located at frequencies (i−1)Fs, 
iFs, and (i + 1)Fs. For simplicity, each spectral Nyquist symbol is composed of the same single 
zero-time Nyquist “subcarrier” t0 = 0 for k = 0. 

For OFDM pulse generation in the time domain, Fig. 4(c), a real rect-shaped pulse xk = 0(t) 
comprising only one carrier “frequency” f = 0 is shifted by an infinite number of equidistant 

time steps iTs, i = −∞… + ∞. These sub-pulses are modulated by complex coefficients cik. The 
total OFDM time signal x(t) for f = 0 is formed by superimposing infinitely many temporal 
sub-pulses. 

For Nyquist signal generation in the frequency domain, Fig. 4(d), a real rect-shaped 
spectrum Yk = 0(f) comprising only one Nyquist pulse (“carrier”) at t = 0 is shifted by a finite 

number of equidistant frequency steps iFs, i = 0…N−1. The resulting sub-spectra are 
modulated by complex coefficients cik. The total Nyquist symbol Y(f) at t = 0 is formed by 
superimposing all N sub-spectra. 
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Fig. 4. Schematic of OFDM signal and Nyquist pulse generation, both in frequency domain 
and time domain. For a better understanding we keep either k or i of Eq. (1) - (4) constant at 
zero while varying the other quantity. (a) OFDM spectrum, OFDM symbol at t0 = 0 (i = 0) 

only: N sinc-shaped sub-spectra for a finite number of k = 0…N − 1 keyed subcarriers are 
frequency shifted by kFs and modulated with complex coefficients cik. The superposition of all 
modulated sub-spectra results in the total OFDM spectrum X(f) = X(0)(f). (b) Nyquist pulse, 
Nyquist symbol with f0 = 0 (i = 0) only: Infinitely many sinc-shaped pulses (Nyquist 

“subcarriers”, k = −∞… + ∞) time shifted from t = 0 by increments kTs and modulated with 
complex coefficients cik. The superposition of all modulated pulses results in the total Nyquist 
time signal y(t) = y(0)(t). (c) OFDM symbol, OFDM spectrum with f0 = 0 (k = 0) only: Infinitely 

many rect-shaped temporal pulses (i = −∞… + ∞) time shifted from t = 0 by increments iTs and 
modulated with complex coefficients cik. The superposition of all modulated pulses results in 
the total OFDM time signal x(t). (d) Nyquist symbol, Nyquist pulse at t0 = 0 (k = 0) only: N 

rect-shaped sub-spectra for a finite number of i = 0…N − 1 keyed spectral symbols are 
frequency shifted by iFs and modulated with coefficients cik. The superposition of all 
modulated spectra results in the total Nyquist spectrum Y (f). 

OFDM and Nyquist receivers can be built similar to the transmitter scheme depicted in 
Fig. 4. To this end, the received signal would enter from the right, the symbol Σ would 
represent a splitter, and local oscillators with complex conjugate time dependency (OFDM 
signal) or complex conjugate Nyquist pulses (Nyquist signal) mix with the incoming signals 
to recover the modulation coefficients cik having integrated over the symbol period Ts (for 
OFDM signal) or over all times (for Nyquist signals). Forming the complex conjugate means 
reverting the signs of frequency steps Fs and time steps Ts, respectively. 

An in-depth mathematical comparison between OFDM and Nyquist pulse shaping is given 
in the Appendix. Due to the close relation to OFDM, Nyquist pulse generation could be also 
referred to as an orthogonal time division multiplexing (OTDM) technique. 

4. Oversampled Nyquist pulses with finite-length 

An elementary Nyquist shaped impulse with minimum spectral width is a sinc-function 
infinitely extended in time. Real Nyquist pulses, however, need to be approximated by a 
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finite-length representation. For practical reasons finite impulse response (FIR) filters are 
used to build the pulse shapes [15, 16]. In addition, for separating the baseband spectrum from 
its periodic repetitions using realizable filters, oversampling by a factor q (typically q = 1.2, 2, 
…) is needed. In this paper we have chosen q = 2. This way we will subsequently save FPGA 
resources since sampling points of adjacent symbols fall onto the same time slot. However, 
smaller oversampling factors such as q = 1.2 suffice if adequate anti-aliasing filters are 
available. This would allow us to reduce the required processing speed and DAC sampling 
rate but comes at the cost of an increased processing complexity. 

A suitable FIR filter of order R can be constructed by a sequence of R delay elements Ts / 
q with Ts = 1 / Fs, and R + 1 taps in-between. The tapped signals are weighed by a number of 
R so-called filter coefficients hr and summed up to form the filter output, Fig. 5. A “one-tap” 
filter with order R = 0 reproduces the filter input. 

 

Fig. 5. Finite impulse response filter (FIR, direct form I) of order R. A series of R delay 
elements Ts / q are located in-between the R + 1 taps. Tapped signals are weighed by R filter 
coefficients hr and summed to form the filter output. 

Signal generation with various FIR filter orders R is shown in Fig. 6. The left column 
shows the impulse response of each filter. The effective windowing is indicated by a green 
rectangle. The linearly scaled corresponding transfer functions are seen in the middle column. 
The right column displays these same transfer functions on a logarithmic scale. The spectra of 
the single pulses (white lines) are plotted together with simulated data (colored). A two-fold 
oversampling q = 2 is used in this context. 

The simulation was performed as follows: A pseudo random binary sequence (PRBS) with 

a length of 2
15

 − 1 serves as origin for simulated complex data. As a reference, these complex 
data cik modulate NRZ pulses, one of which is displayed in Fig. 6(a), left column. The linearly 
scaled sinc-shaped power spectrum of this elementary impulse is seen in Fig. 6(a), middle 
column. The logarithm of the same power spectrum is shown as a white line in Fig. 6(a), right 
column, together with the ensemble-averaged power spectrum for the simulated data. For all 
power spectra a possibly existent discrete carrier line is omitted. 

Nyquist signals shaped with various FIR filters are depicted in Fig. 6(b)-(d). The filter 
order R with R + 1 taps corresponds to the rectangular time window within which the function 
is defined (left column, green). The convolution of the rectangular spectrum of an infinitely 
extended temporal sinc-pulse with the sinc-shaped spectrum of the rectangular time window 
leads to the power spectra depicted in Fig. 6(b)-(d), middle and right column. As the filter 
order R increases from R = 16 to R = 1024, the spectrum evolves towards an ideal rectangle 
rect(f / Fs) with a spectral width equal to the Nyquist bandwidth Fs for complex data. Already 
for R = 32 a significant increase of the spectral efficiency is to be seen in comparison to NRZ 
modulation. For R = 1024 the ideal rectangular spectrum is approximated even more closely. 
However, due to Gibbs’ phenomenon, strong ringing at the steep spectral slopes is to be 
observed. Non-rectangular window functions like Hann or Hamming windows lead to 
smoothened spectra and a stronger suppression of the side lobes. However, this advantage 
comes at the price of a widened spectrum and thus a reduced spectral efficiency. 
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Fig. 6. Impulse responses and transfer functions of FIR filters with various orders R. Left 
column: Impulse responses. The durations of the impulse response is marked with a 
rectangular window (green). Middle column: Power spectra on a linear scale. Right column: 
Power spectra on a logarithmic scale. Colored noisy curves represent the average power 
spectra for a pulse train with a repetition period Ts = 1 / Fs, which has been encoded with 
random complex data. The white curves reproduce the power spectra from the middle column. 
For all power spectra a possibly existent discrete carrier line is omitted. (a) A single NRZ 
impulse “shaped” by a one-tap “filter” of order R = 0 leads to a sinc-shaped spectrum. (b) An 
ideal sinc-impulse is truncated by a rectangular window. The corresponding filter is of order R 
= 16. The power spectrum results from the convolution of the rect-shaped spectrum of the sinc-
impulse with the sinc-shaped spectrum of the rect-window. (c) An increased filter order of R = 
32 leads to a larger time window, and therefore the resulting spectrum evolves towards an ideal 
rectangular shape. (d) A filter with very high order R = 1024 closely approximates a rect-
shaped power spectrum. Overshoots and ringing are due to Gibbs’ phenomenon. All pulses in 
these plots have been q-fold oversampled with q = 2. 

5. Spectral efficiency and peak-to-average power ratio 

Spectral efficiency (SE) is a major argument for the use of advanced modulation formats in 
combination with sophisticated multiplexing techniques. Since Nyquist pulses and OFDM 
signals are closely related, it is interesting to compare the potential SE of both techniques. To 
this end we compute the spectral width B of the Nyquist pulse up to the first zero outside the 
main band, which has a width Fs. The same definition is also used for OFDM [1]. The SE 
results from relating the information rate Fd (measured in bit/s) to the required transmission 
bandwidth B, SE = Fd / B. Information rate and symbol rate are related as follows: For M-ary 
single-polarization single-carrier Nyquist pulse transmission, the symbol rate is 

Nyq

2
log

s d
F F M=  (in the Nyquist context abbreviated by Nyq

s s
F F= , see Table 1). For 

single-polarization M-ary OFDM signals with N subcarriers the symbol rate amounts to 
OFDM

2
( log )

s d
F F N M=  (abbreviated in the OFDM context by the same symbol OFDM

s s
F F= , 

see Table 1). 
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The transmission bandwidth depends on the respective modulation types and formats. For 
Nyquist pulses, the spectrum is calculated in the Appendix, Eq. (38). Because of the finite 
length of the actual Nyquist pulses, the spectrum depends on the filter order R and the 
oversampling factor q, see Fig. 6. For convenience and without loss of generality we choose 
the spectral symbol i = 0 which lies symmetrical to f = 0. The spectrum then reads 

 
( ) ( )0 2 2

, Si Si .s s s

s s

T f F f F
Y f R R R

qF qF
π π

π

    + −
= −    

     
 (5) 

The function Si(z) denotes the sine integral [17], see text before Eq. (38) in the Appendix. 
Power spectra computed from Eq. (5) closely match the graphs of Fig. 6 which are obtained 
by simulations. To determine the bandwidth B = B

Nyq
, we find the first spectral zeros to the 

right and to the left of the main band by a numerically exact evaluation of Eq. (5). From these 
results we extract a simple empirical relation to estimate the SE of digitally generated Nyquist 
signals: 
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Nyquist
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for 1 1024, 2
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 (6) 

The resulting spectral efficiency according to Eq. (6) is plotted in Fig. 7(a) (blue line). 
For OFDM the SE is influenced by the number of subcarriers N, or in other words by the 

size of the inverse fast Fourier transform (IFFT) used for signal generation. For our discussion 
we disregard more advanced OFDM techniques such as a cyclic prefix, guard bands or the 
introduction of pilot tones that would decrease the SE. The resulting SE then is [1] 

 2

OFDM

log
SE .

1 1

M

N
=

+
 (7) 

The normalized spectral efficiencies of OFDM signals are also depicted in Fig. 7(a) (red 
line). The SE of both techniques is almost equal. 

 

Fig. 7. Spectral efficiency (SE) and peak-to-average power ratio (PAPR) for Nyquist pulses 
and OFDM signals as a function of the number R of filter taps and the IFFT size N, 
respectively. (a) Normalized spectral efficiency (SE) for single-polarization M-ary QAM 
modulation. Nyquist shaped signals and OFDM signals show almost identical SE. (b) PAPR 
increases with filter order R for single-carrier Nyquist signals slower than the PAPR for OFDM 
with the number of subcarriers N. 

A major issue that is often referred to reporting on OFDM is the high peak to average 
power ratio (PAPR) of the time domain signal. This is due to the coherent superposition of 
multiple sinusoidal carriers that could interfere constructively. As a consequence, high signal 
amplitudes can occur. In the following we derive PAPR expressions at the transmitter side for 
Nyquist pulse transmission and for OFDM signaling. At the transmitter, a large PAPR is most 
critical regarding the rather low resolution of high-speed DACs, the conversion range of 
which has to be utilized optimally. The PAPR at the receiver end depends heavily on 
properties of the transmission link like dispersion or nonlinearity tolerance. Therefore, general 
predictions cannot be made. 
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To derive an expression for the PAPR in OFDM we need to find the peak power and an 
expression for the average power. A maximum value can be found as follows: In order to 
compute the largest possible peak power of an OFDM signal x(t), we assume without loss of 
generality that the N subcarriers are modulated with a random sequence of real coefficients cik 
=  ± 1. In this case the maximum amplitude is seen if all N maxima of the temporal 
sinusoidals happen to add constructively at one point in time, see Fig. 3(a) at t = 0 and Eq. 
(33) in the Appendix. The average power of such a random OFDM signal is the sum of the 
average powers of the N orthogonal subcarriers. For arbitrary modulation coefficients cik, the 
average power for cik = ±1 has to be divided by a format dependent factor k

2
 [18]. In real-

world OFDM systems the infinitely extended ideal spectrum is narrowed by low-pass 
filtering, so that the orthogonality relation does not hold any more in the strict sense. 
Nevertheless, with the orthogonality relation Eq. (13) and the power relation Eq. (19) we 
obtain a good approximation of the average power given by Eq. (36) with Q = N. We thus 
approximate the PAPROFDM by 

 
2

2

OFDM 21
2

PAPR 2 .
N

k N
N k

= =  (8) 

The result of Eq. (8) for k
2
 = 1 is seen in Fig. 7(b), red line. With increasing number N of 

subcarriers the value for PAPROFDM increases linearly. However, the probability that an 
OFDM signal actually has this peak amplitude decreases with the complexity of the M-ary 
QAM modulation and with the number N of the subcarriers. 

For Nyquist signals the PAPR has to be investigated, too, since a superposition of 
temporally shifted sinc-pulses, see Fig. 3(b), also produces high signal amplitudes at certain 
times. We assume again that the Nyquist pulses are modulated with a random sequence of real 
coefficients cik =  ±1. Although the local extrema of a single sinc-impulse are not located at 

times t / Ts = −0.5, 0.5, 1.5…, i. e., not in the center of the interval between zeros, it can be 
shown that the extrema of superimposed Nyquist pulses are located at exactly these times, Eq. 
(24) in the Appendix. For a worst-case consideration all contributions sum up constructively, 
so in order to obtain the maximum compound signal we sum up the absolute values of sinc-
pulses at t / Ts = 1 / 2. If the compound Nyquist signal was constructed with infinitely 
extended sinc-functions, the maximum signal power would not converge when the number of 
Nyquist pulses increases. Nevertheless, sinc-functions located far away from the time of 
summation only contribute little to the sum. For a finite approximation of a sinc-impulse as 
described in Section 4, only R / q pulses can contribute. Here the filter order R denotes the 
number of time intervals Ts / q for q-fold oversampling, i. e., R stands for the length of the 
impulse response. We find the maximum power, see Eq. (25) in the Appendix with Q = R / q 
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Technically speaking, 
max

P  could become arbitrarily large for large filter orders R. Yet, 

while 
max

P increases with R, the probability for finding R sinc-pulses interfering constructively 

decreases as well similarly to the OFDM case. 
For finalizing the calculation of the PAPR, we need the average power of a single-carrier 

Nyquist signal y
(0)

(t) encoded with real coefficients cik =  ±1. According to [19] we find the 

average power P  of an ideal Nyquist signal (see Eq. (21) in the Appendix), 
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As for band-limited OFDM spectra, orthogonality is lost for truncated Nyquist sinc-
impulses. If Nyquist pulses are generated with a filter of finite (but sufficiently large) order R, 
orthogonality as implied by Eq. (10) is still a good assumption, so that the average power of 

truncated Nyquist sinc-impulses is close to 1P = . As before, for arbitrary modulation 
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coefficients cik, Eq. (10) has to be divided by a format dependent factor k
2
 [18]. The 

PAPRNyquist then follows from the ratio of maximum power Pmax and average power 21P k≈ , 
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1
PAPR sinc .
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R q

r R q
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k r

P =− +
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A detailed mathematical description is given in the Appendix, leading to Eq. (31). The 
PAPR of Nyquist signals from Eq. (11) and k

2
 = 1 is plotted in Fig. 7(b), blue line. Unlike 

OFDM signals where the PAPR increases linearly, Eq. (8), the PAPR of Nyquist signals does 
not, due to the temporal decay of its elementary sinc-impulse. However, neither for OFDM 
nor for single-carrier Nyquist pulses the PAPR converges with increasing IFFT size N or filter 
order R, respectively. 

In Nyquist WDM systems, the PAPR could be higher, because multiple spectral symbols 
separated by at least Fs might add up constructively as well. However, the Nyquist channel 
spacing is typically in the order of several GHz [11–13] whereas OFDM carrier spacings are 
often chosen to be in the MHz [20, 21] range. For large channel spacings as in Nyquist WDM, 
however, strong signal peaks only occur for very short times, and dispersion causes signal 
peaks to decay rapidly if large frequency differences are involved. Non-linear effects in 
WDM systems have been investigated in [22]. 

6. Implementation 

In order to electronically generate Nyquist pulses, advanced digital signal processing (DSP) 
along with digital-to-analog converters are needed. Suitable devices for high-end DSP are 
either application-specific integrated circuits (ASIC) or field programmable gate arrays 
(FPGA). Since ASIC development is time consuming and comes along with high financial 
efforts, the use of FPGA for prototyping purposes is well established. 

6.1 FPGA based DSP 

The main challenge for real-time Nyquist pulse generation is the development of high 
performance FIR filters that provide a sufficient number of filter taps, have adequate 
precision, and enable a high data throughput. The extensive use of look-up tables (LUT) is a 
highly efficient way to implement FIR filters on FPGAs, since resource hungry complex 
multiplications can be avoided. The principle scheme of the DSP performed by the FPGA is 
depicted in Fig. 8. Due to the strong parallelization of the processing, the FPGA internal clock 
can be significantly lower than the Nyquist pulse rate. The FPGA produces 128 samples (each 

 

Fig. 8. FPGA parallel processing. In each computation window the FPGA produces a series of 
64 sinc-pulses with different weighting coefficients cik = ±1 and for i = 0. (a) Products of 
modulation coefficients and windowed sinc-pulses (two-fold oversampled, q = 2) are stored 
within 64 lookup tables (LUT). Stored samples within the LUT are marked as dots. Each of the 
64 LUT outputs is delayed in time such that (b) sinc-maxima (red dots) fall on the zeros of 
neighboring sinc-functions corresponding to a spacing by Ts. For each of the 128 sampling 
times inside the computation window the non-zero samples are added (c), clipped (d), and 
eventually produce the output waveform (e). 
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of 6 bit depth) per clock cycle (4.57 ns for 28 GSa/s). In each computation window (and for 
an oversampling factor of q = 2), a series of 128 / 2 = 64 modulated sinc-pulses form the 
output signal, Fig. 8. The FIR filter is realized in the time domain by convolving the complex 
modulation coefficients cik with a sampled sinc-shaped impulse. All possible products of cik 
and an elementary sinc-impulse are sampled (dots in Fig. 8(a)), quantized and stored within 
LUTs. For illustration purposes we choose cik =  ±1 as coefficients for the spectral symbol i = 
0. The LUT outputs are delayed by a multiple of Ts, Fig. 8(b), and all samples belonging to 
the same point in time are added, Fig. 8(c). The resulting output is fed to a clipping module, 
Fig. 8(d), which then delivers the output Nyquist waveform as seen in Fig. 8(e). Red dots 
mark the position of the sinc-pulse maxima ± 1. Continuous operation for an infinite number 
of Nyquist pulses is achieved through cyclic buffering of samples that are used within 
adjacent computation windows. 

6.2 Experimental setup 

Our real-time Nyquist pulse transmitter (Tx) comprises two Xilinx Virtex 5 field 
programmable gate arrays (FPGA), two high-speed Micram DACs with 6 bit resolution, a 
nested LiNbO3 Mach-Zehnder modulator (MZM) serving as an I/Q-modulator, and an 
erbium-doped fiber amplifier (EDFA). We modulate a continuous wave (CW) external cavity 
laser (ECL) with in-phase (I) and quadrature-phase (Q) data as shown in Fig. 9. Within the 

FPGAs, complex Nyquist pulses are calculated from a 2
15

 − 1 PRBS in real-time as outlined 
above, and passed on to the DACs. The polarization division multiplexing (PDM) stage then 
emulates a polarization multiplexed signal [2]. 

We use two complex samples in each symbol time slot leading to a symbol rate of 14 GBd 
for 28 GSa/s operating DACs. The resulting oversampling by a factor of q = 2 can be reduced 
if adequate electrical or optical anti-aliasing filters are available. 

An amplified spontaneous emission (ASE) source adds optical noise to the signal. The 
noise power can be adjusted by a variable optical attenuator (VOA). A second VOA is used to 
additionally attenuate the signal when measuring very low optical signal-to-noise ratios 
(OSNR). An optical band-pass filter removes noise components outside the signal spectrum. 

At the receiver (Rx) the signal is split in two. One part feeds an optical spectrum analyzer 
(OSA) that measures OSNR values for different levels of noise loading. The other part is 
amplified by an EDFA before it is detected by an Agilent optical modulation analyzer 
(OMA). The OMA performs the offline processing including carrier phase and clock recovery 
as well as decoding, bit error ratio (BER), and error vector magnitude (EVM) measurements. 

 

Fig. 9. Experimental setup for a real-time Nyquist pulse transmitter comprising FPGAI,Q and 
DACI,Q, an externally coupled laser (ECL), an optical I/Q-modulator and an EDFA. An “ideal” 
elementary output pulse along with its corresponding spectrum is shown as an inset (green). 
The PDM stage emulates polarization division multiplexing. The signal is loaded with noise by 
adding a variable amount of amplified spontaneous emission (ASE). The receiver comprises an 
EDFA along with an Agilent N4391A optical modulation analyzer (OMA) for BER and EVM 
measurements, and an optical spectrum analyzer (OSA) for OSNR measurements. 
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7. Experimental results 

We performed measurements with PDM-QPSK and PDM-16QAM signals pre-shaped by FIR 
filters with order 16 and 32 as well as raw NRZ for various levels of OSNR. Measured spectra 
(colored, noisy curves) for both filters and raw NRZ (black) are seen in Fig. 10(a). The results 
are consistent with simulations of the FPGA’s VHDL code using the ModelSim software 
(white lines). As expected, the signals generated with R = 32 showed best spectral efficiency 
and a nearly rectangular shape. The noise floor outside the main band is mostly due to 
quantization noise (6 bit DAC resolution). Quantization noise does not significantly degrade 

 

Fig. 10. Spectra, constellation diagrams and BER versus OSNR and EVM results for PDM-
16QAM and PDM-QPSK signals generated with R = 0 (black, raw NRZ), R = 16 (red), and R 
= 32 (blue) filters. Plotted constellation diagrams comprise data from both polarizations. (a) 
Ensemble averages of measured (black, red, and blue) and VHDL simulated (white) spectra. It 
may be seen that with an increasing number of taps the spectrum evolves towards an ideal 
rectangle. The observed noise floors next to the spectra are due to quantization noise and do 
not significantly degrade the signal quality [11]. (b) Constellation diagrams for PDM-QPSK 
and PDM-16QAM at highest possible OSNR. (c) Measured BER (symbols) versus OSNR 
(lower axis). Calculated equivalent BER [ 18] derived from measured EVM (dashed lines, 
upper axis) are plotted for Nyquist signals generated with filter of order 16 and 32 and raw 
NRZ. Calculated EVM values [ 18] corresponding to the measured OSNR are specified on the 
upper axis. 

the signal quality when the transmitter is employed in a Nyquist WDM system [11], but 
choosing too small a filter order R deteriorates the signal severely. The displayed constellation 
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diagrams are constructed by overlaying the diagrams for both polarizations. The results for 
both filter orders and NRZ are depicted in Fig. 10(b). In order to evaluate the signal quality, 
the OMA measures BER (symbols in Fig. 10(c)) and EVM. The EVM values are converted to 
a BER estimate (dashed lines in Fig. 10(c)) according to [18]. The format-dependent factor k, 
see Eq. (8), and (11), converts an EVM defined by the outermost constellation point (EVMm) 
to an EVM defined by the average power (EVMa) [18]. EVM and OSNR are approximately 

related by 
m

EVM 1/ OSNRk × ≈  [18]. The measured function BER(OSNR) (symbols, 

lower horizontal axis) and the estimated function BER(EVM) (dashed lines, upper horizontal 
axis) are plotted in Fig. 10(c). The graph shows good agreement between measured BER and 
estimated BER over a broad range. We see no degradation of the signal quality comparing the 
pulse sequences generated by filters with order 16 and 32 and NRZ. The spectral efficiency 
for PDM-16QAM (R = 32) is 7.5 bit/s/Hz compared to the theoretical limit of 8 bit/s/Hz. 

8. Nyquist pulse reception – required electrical bandwidth and clock phase recovery 

Reception of a Nyquist pulse M-ary QAM signal is similar to the reception of a conventional, 
unfiltered NRZ signal. The complex-modulated optical field is down-converted to the 
baseband by a coherent receiver (e. g. 90° hybrids with balanced photo-detectors). The 
electrical signal is then sampled by analog-to-digital converters (ADC) before being 
processed in the digital domain. Despite all similarities we identified two differences when 
receiving Nyquist pulses as are discussed in the following. 

8.1 Receiver bandwidth impact 

Electrical bandwidth is one major limitation for high-speed signal converters (DACs and 
ADCs) today. An increase of sampling rate, however, is usually achieved by multiplexing 
multiple low-speed converters. Hence a high sampling rate is not out of reach, whereas high 
electrical bandwidth is the much bigger challenge. We want to compare Nyquist signals with 
standard NRZ signals and the corresponding impact of bandwidth-limited ADCs at the 
receiver. Therefore we generate two signals, namely a Nyquist signal and an NRZ signal, both 
with 16QAM modulation at a symbol rate of 14 GBd. Both signals carry the same amount of 
data (56 Gbit/s). Since the ADCs of our receiver have a fixed analog bandwidth of 32 GHz, 
we emulate a bandwidth-limited system by applying a digital low-pass filter. The cut-off 
frequency of this flat-top FIR filter is varied from the minimum Nyquist bandwidth 7 GHz up 
to 9.33 GHz. A qualitative result is seen in Fig. 11. The Nyquist signal shows a very clear 
constellation diagram even at a receiver bandwidth as low as 7 GHz, Fig. 11(a). The NRZ 
signal performs poorly under the same conditions, Fig. 11(b). Increasing the bandwidth to 
9.33 GHz improves the signal quality of the NRZ, Fig. 11(c). Nonetheless the Nyquist signal 
outperforms the NRZ signal in all cases. 

 

Fig. 11. Constellation diagrams for Nyquist and NRZ signals received with different 
bandwidths. (a) A 14 GBd Nyquist signal is well received with a Nyquist bandwidth of 7 GHz. 
(b) An NRZ of 14 GBd performs poorly with ADCs bandwidth-limited to 7 GHz. (c) 
Increasing the bandwidth to 9.33 GHz enhances the reception of the NRZ signal. Nevertheless, 
the Nyquist signal shows best performance. 
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8.2 Clock phase recovery 

Careful and proper clock recovery is essential for a solid communication link. In order to 
investigate the influence of the clock phase for close-to-ideal Nyquist signals we replaced the 
real-time transmitter, Fig. 9, with an arbitrary waveform generator (AWG). With this 
transmitter we increased the filter order to 1024, Fig. 6(d). 

For standard NRZ and raised-cosine shaped QAM signals it is common to square the 
signal [12] and perform a fast Fourier transform (FFT) over several received symbols. The 
outcome of this procedure is illustrated in Fig. 12(a). Next to the DC peak we identify two 
additional peaks with the frequency of the symbol rate. The spectral location of these peaks 
reveals the symbol rate, and the phase tells the optimum sample time. Squaring the modulated 
sinc-shaped pulses and performing an FFT leads to Fig. 12(b). It is obvious that the clock 
peaks have vanished. Therefore this clock recovery method cannot be applied to sinc-shaped 
Nyquist signals. Instead we developed an alternative technique to recover the clock phase of a 
Nyquist signal. In this technique it is sufficient to compute the standard deviation of the 
modulus of the received Nyquist pulses as a function of the sampling phase. The optimum 
sampling phase is found when the standard deviation is minimum given that sampling is 
always done at equivalent positions of subsequent pulses, see Fig. 12(c). Measured (solid 
lines) and noiseless signals (dashed lines) agree very well. For QPSK, the so computed 
standard deviation drops to zero for noiseless signals, see Fig. 12(c) (QPSK, dashed line). 
Accumulated noise in measured signals (solid lines) leads to a vertical shift of the curves’ 
minima. Nonetheless, the minimum standard deviation for all signals can be clearly identified. 

The algorithm has been tested and works for QPSK to 256QAM and any intermediate M-
ary QAM. Since this method neglects the phase of the complex received signal it can be 
applied prior to carrier phase recovery. Hence standard algorithms for carrier phase recovery 
can be employed. The influence of a phase error on the signal quality (here represented by 
EVM) is depicted in Fig. 12(d). Once the optimum clock phase is found, a feedback control 
minimizing the signal’s EVM is perfectly suited even for real-time systems. 

 

Fig. 12. Clock phase recovery for M-QAM modulation of raised-cosine and Nyquist pulses, 
respectively. (a) Spectrum of a squared raised-cosine signal. The clock phase can be extracted 
from the peaks at the symbol rate. (b) Spectrum of a squared Nyquist sinc-pulse train. The 
peaks at the symbol rate have vanished. (c) Standard deviation of the modulus of four 
measured (solid lines) and noiseless (dashed lines) Nyquist signals plotted over the sampling 
clock phase. Noise leads to a vertical shift of the curves’ minima. The initial points of the 
graphs are arbitrary and depend on the timing of the data acquisition. (d) Dependence of 
Nyquist signal quality on the clock phase error. Solid line: simulation; squares: measurement. 
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Accumulated chromatic dispersion (CD) in uncompensated transmission links is usually 
electrically compensated by a digital filter placed in front of subsequent processing blocks. It 
is independent of the clock phase recovery described here. Nevertheless, our clock phase 
recovery algorithm was measured to tolerate a residual dispersion of up to 2400 ps / nm for a 
14 GBd QPSK sinc-shaped signal. Furthermore, we found by evaluating transmission 
experiments, that polarization mode dispersion (PMD) has only negligible influence on the 
performance of the algorithm. 

9. Conclusions 

We discussed the correspondence between OFDM and single-carrier Nyquist signals in the 
time and frequency domain. We introduced a practical implementation of real-time Nyquist 
signal generation based on FPGA empowered DSP. Both multiplexing techniques have been 
compared with respect to spectral efficiency and peak-to-average power ratio. We further 
discussed the implementation and demonstration of a real-time software-defined Nyquist 
pulse transmitter for data rates up to 112 Gbit/s (PDM-16QAM). The obtained spectra are of 
rectangular shape, and the signal energy is highly confined to the Nyquist frequency band Fs. 
Finally, reception of Nyquist signals is explained and demonstrated, pointing out similarities 
and differences to standard NRZ reception techniques. 

Appendix 

At this point we want to describe in mathematical detail the properties of Nyquist signals and 
illustrate their close relation to OFDM. For a better understanding, Table 1 presents an 
overview of frequently used symbols contrasting OFDM-specific to Nyquist-specific 
parameters. As usual, the symbols t and f stand for time and frequency. 

Table 1. Commonly used terms for OFDM and Nyquist signal description 

 OFDM  Nyquist 

s
T  temporal width of symbol 

s
F  spectral width of symbol 

s
F  spectral subcarrier spacing 

s
T  temporal subcarrier spacing 

k
f  spectral subcarrier position 

k
t  temporal subcarrier position 

0 1k N= −…  
index for spectral position of 
subcarrier (sinusoidal in time) k = −∞ − ∞…  

index for temporal position of 
subcarrier (sinusoidal in 
frequency) 

i = −∞ + ∞…  
index for temporal position of 
symbol (rectangular in time) 

0 1i N= −…  
index for spectral position of 
symbol (rectangular in frequency) 

For general usage we introduce a new set of variables z, Z, m, and Q since the equations 
can be related either to OFDM or Nyquist signals in frequency or time domain, whichever is 
of interest. First we define a rectangular window and a sinc-function by 

 ( )
1 0

1 for / 2
rect , sinc .sin /

0 else 0
/

z
z Zz z

z Z
Z Z z

z Z

π

π

=
 <    = =    

≠    

 (12) 

In the following we summarize the mathematical relations that hold in general: 

Orthogonality relations 

 

/ 2

j2 / j2 /

/2

1
e e d for ,

Z

m z Z m z Z

mm

Z

z m m
Z

π π δ
+

′−
′

−

′= ∈∫ ℤ  (13) 

 
1

sinc sinc d for ,mm

z z
m m z m m

Z Z Z
δ

+∞

′

−∞

   ′ ′− − = ∈   
   ∫ ℤ  (14) 
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Series expansions 

We expand functions φ(z) in a series of orthogonal complex harmonics with the help of the 
orthogonality relation Eq. (13), and functions ψ(z) in a series of orthogonal sinc-functions 
observing the orthogonality relation Eq. (14), 

 ( ) j2 /
e ,

m z Z

m

m

z
πϕ ϕ

+∞

=−∞

= ∑  (15) 

 ( )
/ 2

j2 /

/2

1
e d

Z

m z Z

m

Z

z z
Z

πϕ ϕ
+

−

−

= ∫  (16) 

 ( ) sinc
m

m

z
z m

Z
ψ ψ

+∞

=−∞

 = − 
 

∑  (17) 

 ( )1
sinc dm

z
z m z

Z Z
ψ ψ

+∞

−∞

 = − 
 ∫  (18) 

Power relations 

 ( )
/ 2

2 2

/2

1
d ,

Z

m

mZ

z z
Z

ϕ ϕ
+ +∞

=−∞−

= ∑∫  (19) 

 ( ) 2 21
d .m

m

z z
Z

ψ ψ
+∞ +∞

=−∞−∞

= ∑∫  (20) 

Peak power of a sum of sinc-functions 

Nyquist signals and OFDM spectra are both described by a sum s(z) of equidistantly shifted 
sinc-functions, Eq. (17). We are interested in a worst-case estimation of the maximum power 
|smax|

2
. To this end we assume a constant height of all sinc-functions by choosing coefficients 

|ψm| = 1 with equal magnitude. The signs of the coefficients ψm are then selected such that a 
maximum smax(zmax) is found at some position zmax. We start by expanding the special function 

(1) ( ) 1s z =  in a series of sinc-functions, Eq. (17). The expansion coefficients 
m

ψ  are 

calculated to be 1
m

mψ = ∀  by evaluating Eq. (18) and observing that [19, Vol. 1, p. 454, 

formula 3.721 1.] 

 
1

sinc d 1.
z

m z
Z Z

+∞

−∞

 − = 
 ∫  (21) 

From Eq. (17) it follows that 

 
(1)

( ) sinc 1.
m

z
s z m

Z

+∞

=−∞

 = − = 
 

∑  (22) 

Equation (22) shows that performing a summation of equally spaced sinc-functions with 
identical weight leads to a value of 1 at any position z. This value can be exceeded by 

choosing the expansion coefficients 
m

ψ appropriately. For this it should be noted that the sinc-

function flips sign between adjacent intervals bounded by zeros. The maximum value of the 
sum s(z) is obtained when all sinc-functions have the same sign in the z-interval under 
consideration. This is true for 
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( )

( ) ( )
1

1

0

sinc

1 sinc 1 sinc ,

m

m

m m

m m

z
s z m

Z

z z
m m

Z Z

ψ
+∞

=−∞

+∞ −
+

= =−∞

 = − 
 

   = − − + − −   
   

∑

∑ ∑  

 (23) 

where the coefficients 
m

ψ have been chosen such that pairs of sinc-functions m = (0, + 1); 

(−1, + 2); (−2, + 3); … have all a positive sign in the interval 0 < z < Z. The resulting function 
s(z) is monotonic in 0 < z < Z and symmetrical with respect to z = Z/2, so that the 
superposition of each pair has its maximum at this point, as will be explained in the following. 

Consider a function f (u) which is monotonic in an interval −U < u < + U (U > 0). In this 

interval the sum sf (u) = f (u) + f (−u) has an extremum if sf’(u) = f’(u) − f’(−u) = 0, i. e., for u 
= 0. This result as applied to Eq. (23) means that the maximum is found at the symmetry point 
zmax = Z / 2 of the sum s(z), 

 ( ) ( )1 1
max 2 2

sinc
m

s Z m
+∞

=−∞

= −∑  (24) 

Note that the sum does not converge. However, Eq. (24) also applies to a finite sum with a 

maximum of Q sinc-functions, from which the maximum power 
2

,max
( / 2)

Q
s Z  can be 

computed, 

 ( ) ( )
/ 2

1 1
,max 2 2

/2 1

sinc
Q

Q

m Q

s Z m
=− +

= −∑  (25) 

Average power of an oversampled sinc-function 

For deriving the average power of a sum of oversampled shifted sinc-functions sinc(qz/Z−m) 
(oversampling factor q), we expand ψ(z) = sinc(z/Z) Eq. (17), but this time in terms of 

oversampled sinc-functions sinc(qz/Z−m). We find the expansion coefficients ψm = sinc(m/q) 
according to Eq. (18) and write 

 ( ) sinc sinc sinc .
m

z m z
z q m

Z q Z
ψ

+∞

=−∞

    = = −    
    

∑  (26) 

By substituting ψ(z) in the power relation Eq. (20) and by applying the orthogonality 
relation Eq. (14) we find the average power 

 ( ) 2 21 1
sin 1.

m

m
P z dz c

Z q q
ψ

+∞ +∞

=−∞−∞

 
= = = 

 
∑∫  (27) 

In real life, oversampling the base functions by a factor q (preferably q = 2) is needed to 
simplify the filtering of a Nyquist channel. The sinc(z/Z)-function is then represented not by a 
number of Q base functions as in Eq. (25), but by q Q base-functions, and again orthogonality 
is lost in the strict sense. Nevertheless we approximate Eq. (26) by 

 ( )
/ 2

/2 1

sinc sinc sinc .
qQ

m qQ

z m z
z q m

Z q Z
ψ

+

=− +

    = ≈ −    
    

∑  (28) 

If q Q is large enough, the average power should be still close to 1, 

 
( )

/ 2
, 2

/ 2 1

1
sinc 1.

qQ
q Q

m qQ

m
P

q q

+

=− +

 
= ≈ 

 
∑  (29) 

In reality we not only have a finite number q Q of base functions, but the so far assumed 
equal modulus for all expansion coefficients must be modified if QAM modulated signals 
come into play. In this case, the approximated average power Eq. (29) needs to be divided by 
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a format dependent factor k
2
 [18], which relates the maximum power of the constellation 

points to the mean power for all constellation points. Therefore we write approximately 

 
( )

( ), / 2
, , 2

2 2
/2 1

1
sinc 1.

q Q qQ
q Q k

m qQ

P m
P P

qk k q =− +

 
≈ = = ≈ 

 
∑  (30) 

PAPR for a Nyquist signal 

The average power in Eq. (30) serves as reference for the PAPR whereas the maximum power 
is determined by Eq. (25). We obtain 

 
( ) ( )

2
/2

1
22 1

/2 1,max 2 2

Nyquist /2
2

/2 1

sinc

PAPR .
1

sinc

Q

m QQ

qQ

m qQ

m
s Z

k
P m

q q

=− +

+

=− +

 
− 

 = =
 
 
 

∑

∑
 (31) 

This equation corresponds to Eq. (11) in the main body of this paper. 

Peak power of an OFDM symbol 

An OFDM symbol with Q sinusoidal carriers constant within a window of width Z be given 
by 

 ( )
1

2 cos 2 .
Q

m

m

z
s z m

Z
π α

=

 = + 
 

∑  (32) 

If the phases αm of the Q carriers are chosen accordingly and all symbols have maximum 
values, then all amplitudes add up leading to: 

 
,max

2 .
Q

s Q=  (33) 

Average power of an OFDM symbol 

The average power can be determined with the power relation Eq. (19), 

 

( ) ( )
/ 2 / 2

2 2

1/2 /2

1 1

1 2
d cos 2 d

2 1
.1

2

Z ZQ
Q

m

mZ Z

Q Q

m m

z
P s z z m z

Z Z Z

Z Q
Z

π α
+ +

=− −

= =

 = = + 
 

= = =

∑∫ ∫

∑ ∑
 (34) 

Strictly speaking, orthogonality is lost if the OFDM spectrum is truncated as is always the 
case in reality. Nevertheless, Eq. (34) represents a good approximation for the average power 
of an OFDM signal comprising a sufficient number of Q subcarriers. Similar to the arguments 
leading to Eq. (30), the average power in a symbol needs to be divided by a format dependent 
factor k

2
 [18] such that the average power in a symbol is 

 
( ), 2/
Q k

P Q k=  (35) 

PAPR of an OFDM symbol 

The PAPR follows by relating Eq. (33) to Eq. (35). We find 

 
( )

2

,max 2

OFDM, 1 ,
PAPR 2

Q

k Q k

s
k Q

P
= = =  (36) 

For Eq. (36) the same number of elementary functions was adopted as for Eq. (31). 
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Spectrum of a Nyquist signal 

The spectrum 
( ) ( )0

FIR
,Y f R  of a Nyquist signal having a finite extent in time results from 

convolving a rectangular spectrum Y
(0)

(f) of Eq. (3) (representing the spectrum symmetrical to 
f = 0 of an infinitely extended baseband Nyquist sinc-impulse) with a sinc-shaped spectrum 
W(f, R) (representing the spectrum of a rectangular time window w(t) = rect[t / (RTs / q)] 
which depends on the number of filter taps R and the oversampling factor q), 

 
( ) ( ) ( ) ( ) ( )0 0

FIR
, , rect sinc .

s s

s s

f R f
Y f R Y f W f R T T R

F q qF

   
= ∗ = ∗   

   
 (37) 

On evaluation we find in terms of the sine integral [17] ( )
0

Si (sin / )d
z

z vν ν= ∫  

 
( ) ( )0

FIR

2 2
, Si Si .s s s

s s

T f F f F
Y f R R R

qF qF
π π

π

    + −
= −    

     
 (38) 
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