3 research outputs found

    A Decision Support System for Planning and Operation of Maintenance and Customer Services in Electric Power Distribution Systems

    Get PDF
    This chapter aims to present the design and development of a decision support system (DSS) for the analysis, simulation, planning, and operation of maintenance and customer services in electric power distribution system (EPDS). The main objective of the DSS is to improve the decision‐making processes through visualization tools and simulation of real cases in the EPDS, in order to allow better planning in the short, medium, and long term. Therefore, the DSS helps managers and decision‐makers to reduce maintenance and operational costs, to improve system reliability, and to analyze new scenarios and conditions for system expansion planning. First, we introduce the key challenges faced by the decision‐makers in the planning and operation of maintenance and customer services in EPDS. Next, we discuss the benefits and the requirements for the DSS design and development, including use cases modeling and the software architecture. Afterwards, we present the capabilities of the DSS and discuss important decisions made during the implementation phases. We conclude the chapter with a discussion about the obtained results, pointing out the possible enhancements of the DSS, future extensions, and new use cases that may be addressed

    Resource Planning to Service Restoration in Power Distribution Systems

    Get PDF
    Whenever there are extreme weather events, electric power distribution systems are generally affected largely because they are highly subject by their constructive nature: overhead networks. In this context, the management of maintenance actions is generally referred to as emergency service order, usually associated with a lack of supply and requiring human intervention. The key issue for the resource planning refers to an estimation of service time that allows for more assertive planning possible. This chapter proposes a predictive modelling of emergency services for resource planning when considering the geographic dispersion of such services and also the time windows that comprise the amount of service time demanded. After presenting the methodological procedures, a case study depicts the application of the proposed method in order to support proactive service routing

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore