28 research outputs found

    Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Plant Physiology and Biochemistry, doi:10.1016/j.plaphy.2006.03.003.The endoplasmic reticulum (ER) of plant cells undergoes a drastic reorganization during cell division. In tobacco NT-1 cells that stably express a GFP construct targeted to the ER, we have mapped the reorganization of ER that occurs during mitosis and cytokinesis with confocal laser scanning microscopy. During division, the ER and nuclear envelope do not vesiculate. Instead, tubules of ER accumulate around the chromosomes after the nuclear envelope breaks down, with these tubules aligning parallel to the microtubules of the mitotic spindle. In cytokinesis, the phragmoplast is particularly rich in ER, and the transnuclear channels and invaginations present in many interphase cells appear to develop from ER tubules trapped in the developing phragmoplast. Drug studies, using oryzalin and latrunculin to disrupt the microtubules and actin microfilaments respectively, demonstrate that during division, the arrangement of ER is controlled by microtubules and not by actin, which is the reverse of the situation in interphase cells.Funding for this project included NASA grant # NAGW-4984 to the North Carolina NSCORT (NASA Specialized Center of Research and Training) (SLG, DAC, NSA), NSF REU Site Grant #0243930 (NSA), a Sigma Xi Grant-in-Aid Award (SLG), and Australian Research Council Discovery Grant no. DP0208806 (DAC)

    Genetically determined circulating resistin concentrations and risk of colorectal cancer: a two-sample Mendelian randomization study

    Get PDF
    PURPOSE: Resistin, a novel pro-inflammatory protein implicated in inflammatory processes, has been suggested to play a role in colorectal development. However, evidence from observational studies has been inconsistent. Mendelian randomization may be a complementary method to examine this association. METHODS: We conducted a two-sample Mendelian randomization to estimate the association between genetically determined circulating resistin concentrations and risk of colorectal cancer (CRC). Protein quantitative trait loci (pQTLs) from the SCALLOP consortium were used as instrumental variables (IVs) for resistin. CRC genetic summary data was obtained from GECCO/CORECT/CCFR (the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry), and FinnGen (Finland Biobank). The inverse variance weighted method (IVW) was applied in the main analysis, and other robust methods were used as sensitivity analyses. Estimates for the association from the two data sources were then pooled using a meta-analysis approach. RESULTS: Thirteen pQTLs were identified as IVs explaining together 7.80% of interindividual variation in circulating resistin concentrations. Based on MR analyses, genetically determined circulating resistin concentrations were not associated with incident CRC (pooled-IVW-OR per standard deviation of resistin, 1.01; 95% CI 0.96, 1.06; p = 0.67. Restricting the analyses to using IVs within or proximal to the resistin-encoding gene (cis-IVs), or to IVs located elsewhere in the genome (trans-IVs) provided similar results. The association was not altered when stratified by sex or CRC subsites. CONCLUSIONS: We found no evidence of a relationship between genetically determined circulating resistin concentrations and risk of CRC

    Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations

    Get PDF
    Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice

    Novel Common Genetic Susceptibility Loci for Colorectal Cancer

    No full text
    Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10−8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery–replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10−8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10−8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening

    Novel Common Genetic Susceptibility Loci for Colorectal Cancer

    No full text
    Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10−8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery–replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10−8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10−8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening
    corecore