163 research outputs found

    Development of a high throughput and low cost model for the study of semi-dry biofilms

    Get PDF
    The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well−1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour

    Fabrication of Pt/Ru Nanoparticle Pair Arrays with Controlled Separation and their Electrocatalytic Properties

    Get PDF
    Aiming at the investigation of spillover and transport effects in electrocatalytic reactions on bimetallic catalyst electrodes, we have prepared novel, nanostructured electrodes consisting of arrays of homogeneously distributed pairs of Pt and Ru nanodisks of uniform size and with controlled separation on planar glassy carbon substrates. The nanodisk arrays (disk diameter approximate to 60 nm) were fabricated by hole-mask colloidal lithography; the separation between pairs of Pt and Ru disks was varied from -25 nm (overlapping) via +25 nm to +50 nm. Morphology and (surface) composition of the Pt/Ru nanodisk arrays Were characterized by scanning electron microscopy, energy dispersive X-ray analysis, and X-ray Photoelectron spectroscopy, the electrochemical/electrocatalytic properties were explored by cyclic voltammetry, COad monolayer oxidation ("COad stripping"), and potentiodynamic hydrogen oxidation. Detailed analysis of the 2 COad oxidation peaks revealed that on all bimetallic pairs these cannot be reproduced by superposition of the peaks obtained on electrodes with Pt/Pt or Ru/Ru pairs, pointing to effective Pt-Ru interactions even between rather distant pairs (50 nm). Possible reasons for this observation and its relevance for the understanding of previous reports of highly active catalysts with separate Pt and Ru nanoparticles are discussed. The results clearly demonstrate that this preparation method is perfectly suited for fabrication of planar model electrodes with well-defined arrays of bimetallic nanodisk pairs, which opens up new possibilities for model studies of electrochemical/electrocatalytic reactions

    Measurement of electroweak parameters from hadronic and leptonic decays of the Z 0

    Get PDF
    We have studied the reactions e + e − →hadrons, e + e − , ÎŒ + ÎŒ − and τ + τ − , in the energy range 88.2 GeV. A total luminosity of 5.5 pb −1 , corresponding to approximately 115000 hadronic and 10000 leptonic Z 0 decays, has been recorded with the L3 detector. From a simultaneous fit to all of our measured cross section data, we obtain assuming lepton universality:Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47890/1/10052_2005_Article_BF01475788.pd

    Measurement of inclusive η production in hadronic decays of the Z0

    Full text link
    • 

    corecore