1,493 research outputs found

    A major outburst from the X-ray binary RX J0520.5-6932

    Full text link
    We report on the analysis of 8 years of MAssive Compact Halo Objects (MACHO) data for the source RX J0520.5-6932. A regular period of 24.4 days has been confirmed, however this is manifest almost entirely in the red part of the spectrum. A major outburst, lasting approximately 200 days, was observed which increased the apparent brightness of the object by approximately 0.15 magnitudes without significantly altering its V-R colour index. This outburst was also seen in X-ray data. The evidence from this analysis points to the identification of this object as a Be/X-ray binary with a periodically variable circumstellar disk and a very early optical counterpart.Comment: Paper has been accepted by MNRA

    AX J0049.4-7323 - a close look at a neutron star interacting with a circumstellar disk

    Full text link
    Detailed evidence on the system AX J0049.4-7323 is presented here to show how the passage of the neutron star in the binary system disrupts the circumstellar disk of the mass donor Be star. A similar effect is noted in three other Be/X-ray binary systems. Together the observational data should provide valuable tools for modelling these complex interactions.Comment: 4 pages, accepted for publication in MNRA

    On the periodicities present in the optical light curves of SMC Be/X-ray binaries

    Full text link
    We present a comprehensive study of the periodic variations observed in OGLE I-band light curves of SMC Be/X-ray binaries, discovering new optical periodicities in 9 systems. We find that these periodicities derive from a number of mechanisms, notably disturbance of the decretion disk on the orbital period of the system, and aliased non-radial pulsations. We develop metrics that allow these mechanisms to be distinguished on the basis of the shape of the folded optical light curve, and use these metrics to categorise the periodicities present in \sim 50 SMC binary systems. We conclude that extreme care must be taken in the interpretation of the OGLE light curves since only around 30% of the periodicities present can be unambiguously attributed to orbital periods.Comment: 16 pages, 17 figures, accepted for publication in MNRA

    Real-time broadening of non-equilibrium density profiles and the role of the specific initial-state realization

    Get PDF
    The real-time broadening of density profiles starting from non-equilibrium states is at the center of transport in condensed-matter systems and dynamics in ultracold atomic gases. Initial profiles close to equilibrium are expected to evolve according to linear response, e.g., as given by the current correlator evaluated exactly at equilibrium. Significantly off equilibrium, linear response is expected to break down and even a description in terms of canonical ensembles is questionable. We unveil that single pure states with density profiles of maximum amplitude yield a broadening in perfect agreement with linear response, if the structure of these states involves randomness in terms of decoherent off-diagonal density-matrix elements. While these states allow for spin diffusion in the XXZ spin-1/2 chain at large exchange anisotropies, coherences yield entirely different behavior.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    FUSE Spectra of the Black Hole Binary LMC X-3

    Full text link
    Far-ultraviolet spectra of LMC X-3 were taken covering photometric phases 0.47 to 0.74 in the 1.7-day orbital period of the black-hole binary (phase zero being superior conjunction of the X-ray source). The continuum is faint and flat, but appears to vary significantly during the observations. Concurrent RXTE/ASM observations show the system was in its most luminous X-ray state during the FUSE observations. The FUV spectrum contains strong terrestrial airglow emission lines, while the only stellar lines clearly present are emissions from the O VI resonance doublet. Their flux does not change significantly during the FUSE observations. These lines are modelled as two asymmetrical profiles, including the local ISM absorptions due to C II and possibly O VI. Velocity variations of O VI emission are consistent with the orbital velocity of the black hole and provide a new constraint on its mass.Comment: 12 pages including 1 table, 4 diagrams To appear in A

    Orbital Period Determinations for Four SMC Be/X-ray Binaries

    Full text link
    We present an optical and X-ray study of four Be/X-ray binaries located in the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B, providing both a measurement of the orbital period (Porb = 18.62, 68.90, and 229.9 days for the pulsars respectively) and a detailed optical orbital profile for each pulsar. For SXP172 this has allowed a direct comparison of the optical and X-ray emission seen through regular RXTE monitoring, revealing that the X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by XMM-Newton have identified a new source in the vicinity of SXP15.3 raising doubt on the identification of the optical counterpart to this X-ray pulsar. Here we present a discussion of the observations that led to the proposal of the original counterpart and a detailed optical analysis of the counterpart to the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data. The optical characteristics of this star are consistent with that of a SMC Be/X-ray binary. However, this star was rejected as the counterpart to SXP15.3 in previous studies due to the lack of H{\alpha} emission.Comment: Accepted for publication in MNRAS, 11 pages, 17 figure
    corecore