14,417 research outputs found

    Optimizing Resolution and Uncertainty in Bathymetric Sonar Systems

    Get PDF
    Bathymetric sonar systems (whether multibeam or phase-differencing sidescan) contain an inherent trade-off between resolution and uncertainty. Systems are traditionally designed with a fixed spatial resolution, and the parameter settings are optimized to minimize the uncertainty in the soundings within that constraint. By fixing the spatial resolution of the system, current generation sonars operate sub-optimally when the SNR is high, producing soundings with lower resolution than is supportable by the data, and inefficiently when the SNR is low, producing high-uncertainty soundings of little value. Here we propose fixing the sounding measurement uncertainty instead, and optimizing the resolution of the system within that uncertainty constraint. Fixing the sounding measurement uncertainty produces a swath with a variable number of bathymetric estimates per ping, in which each estimate’s spatial resolution is optimized by combining measurements only until the desired depth uncertainty is achieved. When the signal to noise ratio is sufficiently high such that the desired depth uncertainty is achieved with individual measurements, bathymetric estimates are produced at the sonar’s full resolution capability. Correspondingly, a sonar’s resolution is no-longer only considered as a property of the sonar (based on, for example, beamwidth and bandwidth,) but now incorporates geometrical aspects of the measurements and environmental factors (e.g., seafloor scattering strength). Examples are shown from both multibeam and phase- differencing sonar systems

    Acoustic positioning and tracking in Portsmouth Harbour, New Hampshire

    Get PDF
    Portsmouth Harbor, New Hampshire, is frequently used as a testing area for multibeam and sidescan sonars, and is the location of numerous ground-truthing studies. Having the ability to accurately position underwater sensors is an important aspect of this type of work. However, underwater positioning in Portsmouth Harbor is challenging. It is relatively shallow, approximately one kilometer wide with depths of less than 25 meters. There is mixing between fresh river water and seawater, which is intensified by high currents and strong tides. This causes a very complicated spatial and temporal sound speed structure. Solutions that use the time-of-arrival of an acoustic pulse to estimate range will require very precise knowledge of the travel paths of the signal in order to separate out issues of multipath arrivals. An alternative solution is to use the phase measurements between closely spaced hydrophones to measure the bearing of an acoustic pinger. By using two bearing measurement devices that are widely separated, the intersection of the two bearings can be used to position the pinger. The advantage of this approach is that the sound speed only needs to be known at the location of the phase measurements. Both time-of-arrival and phase difference systems may encounter difficulties arising from horizontal refraction due to spatially varying sound speed. To ascertain which solution would be optimal in Portsmouth Harbor, the time-of-arrival and phase measurement approaches are being examined individually. Initial field tests have been conducted using a 40 kHz signal to look at bearing accuracy. Using hydrophones that are spaced 2/3 wavelengths apart, the bearing accuracy was found to be 1.25deg for angles up to 20deg from broadside with signal to noise ratios (SNR) greater than 15 dB. The results from the closely spaced hydrophones were used to resolve phase ambiguities, allowing finer bearing measurements to be made between hydrophones spaced 5 wavelengths apart. The fi- ne bearing measurements resulted in a bearing accuracy of 0.3deg for angles up to 20deg from broadside with SNR greater than 15 dB. Field tests planned for summer 2007 will include a more detailed investigation of how the environmental influences affect each of the measurement types including range, signal to noise ratio, currents, and sound speed structure

    An Abbreviated Method for the Quality Control of Pollen Counters

    Get PDF
    We present an abbreviated method for conducting large scale quality control (QC) exercises over limited time periods, which was used for examining the proficiency of technicians involved in the electronic Pollen Information Network (ePIN). The goal was for technicians to have their analysis skills evaluated at least twice: (1) by having at least one of their slides successfully checked by other counters in the ePIN network and (2) by successfully examining at least one additional slide from other sites. Success was judged as a relative difference (RDif %) ≤ 30% between the two daily average pollen concentrations. A total of 21 sites participated in the ePIN QC exercise. All of the results for total pollen had RDif % 30%, three for Betula and two for Poaceae pollen. Of these, three were slides containing < 40 pollen/m3 daily average and two were for sites that had microscopes with small fields of view and examined < 10% of the slide surface. More than 80% of the participants had at least two slides successfully checked by someone else in the network, and all of the participants had one slide successfully examined. The latter is comparable to a traditional ring test where only one slide is sent to participating sites. The method described here enabled a large number of technicians to be examined in a short period of time and represents a viable alternative to other approaches that can take many months to complete

    Daytime ozone and temperature variations in the mesosphere: A comparison between SABER observations and HAMMONIA model

    Get PDF
    The scope of this paper is to investigate the latest version 1.07 SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) tropical ozone from the 1.27 ÎĽm as well as from the 9.6 ÎĽm retrieval and temperature data with respect to daytime variations in the upper mesosphere. For a better understanding of the processes involved we compare these daytime variations to the output of the three-dimensional general circulation and chemistry model HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere). The results show good agreement for ozone. The amplitude of daytime variations is in both cases approximately 60% of the daytime mean. During equinox the daytime maximum ozone abundance is for both, the observations and the model, higher than during solstice, especially above 80 km. We also use the HAMMONIA output of daytime variation patterns of several other different trace gas species, e.g., water vapor and atomic oxygen, to discuss the daytime pattern in ozone. In contrast to ozone, temperature data show little daytime variations between 65 and 90 km and their amplitudes are on the order of less than 1.5%. In addition, SABER and HAMMONIA temperatures show significant differences above 80 k

    Two-particle interference of electron pairs on a molecular level

    Full text link
    We investigate the photo-doubleionization of H2H_2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the "dielectron") does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved

    Penetration Depth Measurements in MgB_2: Evidence for Unconventional Superconductivity

    Full text link
    We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field acac-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.Comment: 4 pages 3 figure
    • …
    corecore