8,115 research outputs found

    Upper Bounds for Cyclotomic Numbers

    Get PDF
    Let qq be a power of a prime pp, let kk be a nontrivial divisor of q1q-1 and write e=(q1)/ke=(q-1)/k. We study upper bounds for cyclotomic numbers (a,b)(a,b) of order ee over the finite field Fq\mathbb{F}_q. A general result of our study is that (a,b)3(a,b)\leq 3 for all a,bZa,b \in \mathbb{Z} if p>(14)k/ordk(p)p> (\sqrt{14})^{k/ord_k(p)}. More conclusive results will be obtained through separate investigation of the five types of cyclotomic numbers: (0,0),(0,a),(a,0),(a,a)(0,0), (0,a), (a,0), (a,a) and (a,b)(a,b), where aba\neq b and a,b{1,,e1}a,b \in \{1,\dots,e-1\}. The main idea we use is to transform equations over Fq\mathbb{F}_q into equations over the field of complex numbers on which we have more information. A major tool for the improvements we obtain over known results is new upper bounds on the norm of cyclotomic integers

    Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Get PDF
    In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, similar to 16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C-60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C-60 top layer on the device performance

    Humidity Versus Photo-Stability of Metal Halide Perovskite Films in a Polymer Matrix

    Get PDF
    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells

    Parameterized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

    Get PDF
    Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.Comment: 19 pages, many figures. Matches PRD versio

    Instanton operators in five-dimensional gauge theories

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are creditedN.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. OPen Aceess funded by SCOAP

    PEDIATRIC TULAREMIA– A CASE SERIES FROM A SINGLE CENTER IN SWITZERLAND

    Get PDF
    Background The incidence of tularemia has recently increased throughout Europe. Pediatric tularemia typically presents with ulceroglandular or glandular disease and requires antimicrobial therapy not used in the empirical management of childhood acute lymphadenitis. We describe the clinical presentation and course in a case series comprising 20 patients. Methods Retrospective analysis of a single-center case series of microbiologically confirmed tularemia in patients below 16 years of age diagnosed between 2010 and 2021. Results Nineteen patients (95%) presented with ulceroglandular (n = 14) or glandular disease (n = 5), respectively. A characteristic entry site lesion (eschar) was present in 14 (74%). Fever was present at illness onset in 15 patients (75%) and disappeared in all patients before targeted therapy was initiated. The diagnosis was confirmed by serology in 18 patients (90%). While immunochromatography (ICT) was positive as early as on day 7, a microagglutination test (MAT) titer 1:≥160 was found no earlier than on day 13. Sixteen patients (80%) were initially treated with an antimicrobial agent ineffective against F. tularensis. The median delay (range) from illness onset to initiation of targeted therapy was 12 days (range, 6-40). Surgical incision and drainage was ultimately performed in 12 patients (60%). Conclusion Pediatric tularemia in Switzerland usually presents with early, self-limiting fever, and a characteristic entry site lesion with regional lymphadenopathy draining the scalp or legs. Particularly in association with a tick exposure history, this presentation may allow early first-line therapy with an agent specifically targeting F. tularensis, potentially obviating the need for surgical therapy

    Quantum and classical vibrational relaxation dynamics of N-methylacetamide on ab initio potential energy surfaces

    Full text link
    Employing extensive quantum-chemical calculations at the DFT/B3LYP and MP2 level, a quartic force field of isolated N-methylacetamide is constructed. Taking into account 24 vibrational degrees of freedom, the model is employed to perform numerically exact vibrational configuration interaction calculations of the vibrational energy relaxation of the amide I mode. It is found that the energy transfer pathways may sensitively depend on details of the theoretical description. Moreover, the exact reference calculations were used to study the applicability and accuracy of (i) the quasiclassical trajectory method, (ii) time-dependent second-order perturbation theory, and (iii) the instantaneous normal mode description of frequency fluctuations. Based on the results, several strategies to describe vibrational energy relaxation in biomolecular systems are discussed.Comment: 18 pages, 6 figures, submitted to J. Phys. Chem.

    Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Get PDF
    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations
    corecore