1,149 research outputs found

    Dvoretzky type theorems for multivariate polynomials and sections of convex bodies

    Full text link
    In this paper we prove the Gromov--Milman conjecture (the Dvoretzky type theorem) for homogeneous polynomials on Rn\mathbb R^n, and improve bounds on the number n(d,k)n(d,k) in the analogous conjecture for odd degrees dd (this case is known as the Birch theorem) and complex polynomials. We also consider a stronger conjecture on the homogeneous polynomial fields in the canonical bundle over real and complex Grassmannians. This conjecture is much stronger and false in general, but it is proved in the cases of d=2d=2 (for kk's of certain type), odd dd, and the complex Grassmannian (for odd and even dd and any kk). Corollaries for the John ellipsoid of projections or sections of a convex body are deduced from the case d=2d=2 of the polynomial field conjecture

    Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC

    Full text link
    We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Cosmic distance-duality as probe of exotic physics and acceleration

    Get PDF
    In cosmology, distances based on standard candles (e.g. supernovae) and standard rulers (e.g. baryon oscillations) agree as long as three conditions are met: (1) photon number is conserved, (2) gravity is described by a metric theory with (3) photons travelling on unique null geodesics. This is the content of distance-duality (the reciprocity relation) which can be violated by exotic physics. Here we analyse the implications of the latest cosmological data sets for distance-duality. While broadly in agreement and confirming acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia at z > 0.5, perhaps due to lensing magnification bias. This brightening has been interpreted as evidence for a late-time transition in the dark energy but because it is not seen in the d_A data we argue against such an interpretation. Our results do, however, rule out significant SN-Ia evolution and extinction: the "replenishing" grey-dust model with no cosmic acceleration is excluded at more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication in PR

    Task-Oriented Conversational Behavior of Agents for Collaboration in Human-Agent Teamwork

    Get PDF
    International audienceCoordination is an essential ingredient for human-agent teamwork. It requires team members to share knowledge to establish common grounding and mutual awareness among them. This paper proposes a be-havioral architecture C 2 BDI that enhances the knowledge sharing using natural language communication between team members. Collaborative conversation protocols and resource allocation mechanism have been defined that provide proactive behavior to agents for coordination. This architecture has been applied to a real scenario in a collaborative virtual environment for learning. The solution enables users to coordinate with other team members

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure

    Inherent thermometry in a hybrid superconducting tunnel junction

    Full text link
    We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed

    Dynamics and Scaling of 2D Polymers in a Dilute Solution

    Get PDF
    The breakdown of dynamical scaling for a dilute polymer solution in 2D has been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)]. However, we show here both numerically and analytically that dynamical scaling holds when the finite-size dependence of the relevant dynamical quantities is properly taken into account. We carry out large-scale simulations in 2D for a polymer chain in a good solvent with full hydrodynamic interactions to verify dynamical scaling. This is achieved by novel mesoscopic simulation techniques

    Mesoscopic Stern-Gerlach device to polarize spin currents

    Full text link
    Spin preparation and spin detection are fundamental problems in spintronics and in several solid state proposals for quantum information processing. Here we propose the mesoscopic equivalent of an optical polarizing beam splitter (PBS). This interferometric device uses non-dispersive phases (Aharonov-Bohm and Rashba) in order to separate spin up and spin down carriers into distinct outputs and thus it is analogous to a Stern-Gerlach apparatus. It can be used both as a spin preparation device and as a spin measuring device by converting spin into charge (orbital) degrees of freedom. An important feature of the proposed spin polarizer is that no ferromagnetic contacts are used.Comment: Updated to the published versio

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
    • …
    corecore