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The breakdown of dynamical scaling for a dilute polymer solution in two dimensions has been suggested by
Shannon and Choy@Phys. Rev. Lett.79, 1455 ~1997!#. However, we show here through extensive computer
simulations that dynamical scaling holds when the relevant dynamical quantities are properly extracted from
finite systems. To verify dynamical scaling, we present results based on mesoscopic simulations in two dimen-
sions for a polymer chain in a good solvent with full hydrodynamic interactions. We also present analytical
arguments for the size dependence of the diffusion coefficient and find excellent agreement with the present
large-scale simulations.

DOI: 10.1103/PhysRevE.68.050102 PACS number~s!: 68.35.Fx, 61.20.Ja, 82.20.Wt

The dynamics of polymer chains has attracted attention
for decades already. In three dimensions, polymer dynamics
exhibits rich and complex behavior which depends on the
solvent conditions and polymer concentration@1,2#. The two-
dimensional case, however, has attracted much less attention.
Recently, it has been realized that it has important applica-
tions in the field of colloids and biomolecules. Examples
include the 2D diffusion of DNA oligonucleotides confined
to interfaces@3# and the lateral diffusion of lipids and pro-
teins along biological interfaces@4# such as cell membranes.
Further, the dynamics of polymers in two dimensions is of
major importance in thin films thinner the size of the poly-
mer. Wetting, surface adhesion, and flow in confined geom-
etries are examples@5# of such problems.

An important feature of essentially all the 2D diffusion
processes in soft matter is that they take place in a solvated
environment, which implies that the role of thehydrody-
namic interaction~HI! cannot be disregarded. It originates
from interactions mediated by the solvent in the presence of
momentum conservation. In three dimensions the effects of
hydrodynamics are well understood: it is well known that the
dynamics of polymers in dilute solution is well described by
the Zimm model@2#. In two dimensions, however, the situa-
tion is more subtle as will be discussed below.

The dynamics of polymer chains is described by the
theory of dynamical scaling@2#. The two key quantities are
the radius of gyrationRg and the center-of-mass~c.m.! dif-
fusion coefficientD of the chain. In the dilute limit, as a
function of the degree of polymerizationN, they follow the
scaling relationsRg;Nn andD;N2nD, with scaling expo-
nentsn andnD , respectively. Another central quantity is the
intermediate scattering function defined as

S~kW ,t !5~1/N!(
m,n

^exp$ ikW•@rWm~ t !2rWn~0!#%&, ~1!

wherekW is a wave vector, and$rWn% ’s are the positions of the
monomers. This function should scale as@2#

S~k,t !5k21/nF~ tkx!, ~2!

where x is the dynamical scaling exponentrelated to the
other exponents through the relation

x521nD /n. ~3!

This is valid forkP(2p/Rg ,2p/a), wherea is the size of a
monomer. Equations~2! and ~3! are the cornerstones of dy-
namical scaling of polymers.

In the purely dissipative case, the values of the scaling
exponents for polymer chains are well understood@2#. In the
dilute limit the simple Rouse model givesn51/2 andnD
51. When proper volume exclusion is taken into account,
n53/4 in two dimensions and'3/5 in three dimensions,
while nD51 still holds for dilute 3D systems and forall
polymer concentrations in two dimensions@6#.

However, when the HI is taken into account, the situation
becomes different. While in 3D theory and numerical simu-
lations agree with the prediction of the Zimm equations that
n5nD ~i.e., x53) @7,8#, in two dimensions the situation is
less clear. It has been established both theoretically@1,2# and
computationally @9,10# that in good solvent conditions
n53/4 still holds in two dimensions. The situation withnD is
more subtle. Using lattice-gas simulations Vianney and Koel-
man @10# found nD50.7860.05. The molecular dynamics
~MD! simulations ofS(k,t) by Shannon and Choy@9#, in
turn, gavex52 which implies thatnD50, if Eq. ~3! holds.
However, from their MD data forD vs N they concluded that
nD.0 thus contradicting the scaling law. They also solved
the Zimm equations numerically in two dimensions and veri-
fied the result thatx52, but found that nownD,0 @9#.
These results prompted the authors of Ref.@9# to suggest that
dynamical scaling isbrokenfor 2D polymers. Essentially, the
very basis of polymer dynamics is being questioned.

In this paper, our objective is to determine the validity of
dynamical scaling for 2D polymers. To this end, we extract
the exponentsn, nD , and x through extensive mesoscopic
simulations of a 2D polymer in a good solvent with the full
HI included. To complement this, we briefly describe ana-
lytic arguments which show that when finite-size effects are
taken into account, the scaling ofD with respect toN is truly
logarithmic, leading tonD50 and thus tox52. Our numeri-
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cal results verify both thatx52 and the predicted logarith-
mic scaling ofD. Thus we conclude that dynamical scalingis
obeyed in two dimensions.

To overcome the significant difficulties in simulating
polymers with full HIs, we employ a novel mesoscopic
simulation method introduced by Malevanets and Kapral
~MK ! @11,12#. It is essentially a hybrid molecular dynamics
scheme, where the polymer chain is treated microscopically
while the solvent obeys coarse-grained dynamics. In practice
this idea is implemented by choosing the monomer-monomer
and monomer-solvent interactions as in MD simulations,
while the conservative interactions between the solvent
particles are absent. This description preserves the hydro-
dynamic modes through so-called collision rules, and allows
for a major speedup compared to other techniques such as
MD.

To describe the dynamics of the coarse-grained solvent,
time is partitioned into segmentst and the simulation box is
divided into collision volumes or cells. The effective inter-
actions between the solvent molecules take place at eacht:
this is called a collision. In a collision the velocities of the
solvent particles are transformed according tovW i(t1t)5VW

1vW •@vW i(t)2VW #. HerevW i is the velocity of the particlei, VW is
the average velocity of all the particles in the cell the particle
i belongs to, andvW is a random rotation matrix chosen for
that particular cell. It can be shown@11# that this multipar-
ticle collision dynamics conserves the momentum and en-
ergy in each collision volume, and thus gives a correct de-
scription of the hydrodynamics of the velocity field.

Our model system consists of a polymer chain withN
monomers immersed in a 2D coarse-grained solvent. The
mass of a solvent particle is set tom, and the monomer mass
is 2m. The monomer-monomer and monomer-solvent inter-
actions are described by a truncated Lennard-Jones~LJ! po-
tential:

ULJ~r !5H 4e@~s/r !122~s/r !6#1e, r<21/6s

0, r .21/6s.
~4!

Here s and e together withm define the LJ unit system,
where the unit of time is defined astLJ5sAm/e. In addition
to the LJ potential, there is an attractive finite extensible
nonlinear elastic potential between the nearest-neighbor
monomers:

UC~r !52~aR0
2/2!ln~12r 2/R0

2!, ~5!

wherea57es22 andR052s.
The solvent density was set tor50.581s22, and the tem-

perature waskBT51.2e, yielding good solvent conditions.
The equations of motion were integrated using the velocity
Verlet algorithm with a time stepdt50.005tLJ . The choice
of the parameters that determine the collision dynamics fixes
the properties of the coarse-grained solvent, e.g., its viscos-
ity. Here we set the collision time tot5tLJ and the linear
size of the cell tol c52s. The random rotation angles were
chosen from a uniform distribution in@0,2p!. The size of the
polymer chainN varies from 20 to 150 monomers, and the
linear system sizeL ranges from 40s up to 420s. Periodic

boundary conditions were employed for all system sizes. The
c.m. diffusion coefficientD was determined using the
memory expansion method of Ref.@13#. As shown explicitly
in Ref. @13#, the memory expansion gives a result fully con-
sistent with the mean square displacement analysis, but is
numerically more efficient.

First, we checked the scaling ofRg with NP@20,150#
@14# and found thatn50.7560.02, in excellent agreement
with theory. Next, we computed the intermediate scattering
function S(k,t) which is depicted in Fig. 1. Our data show
the best collapse withx52.060.1. We find thatall the
datasetscorresponding to differentN and L coalesce when
LRg

21@1, as they should. This confirms the MD results of
Shannon and Choy@9#, and shows that the 3D Zimm result
x53 is invalid in two dimensions.

Next, we address the crucial question of the value of the
exponentnD . In the 3D case@8#, the finite-size dependence
of D is D;1/L. Hence, in principle it is easy to determineD
for a fixed chain lengthN by running a series of simulations
for different values ofL, and then extrapolating toL→`. By
repeating this procedure for several values ofN, the exponent
nD can be determined.

However, in the 2D case the finite-size effects are much
more subtle due to the infinite range of the HI. We have
calculatedD analytically for a 2D polymer in a finite system
of size L using the approaches presented in Refs.@8,9,15#.
Here we shall assume that a finiteD exists in the limit t
→` ~see the discussion below! and follow Ref.@15# starting
from Eq. ~3.6!:

D5
kBT

N2hA
(

qP[2p/L,q0]
q22S~q! lim

k→0
k22(

l51

2

~kW• êl!2, ~6!

whereA is the area,h the solvent viscosity,S(q) the static
structure factor,q0 a cutoff implying that intermediate wave
vectors are considered, andêl a member of an orthonormal
set with ê25qW /q. Using the well-known result for long

FIG. 1. Scaling ofS(k,t) for NP$30,40,60,80,120,150% for sys-
tems where the ratioL/Rg.10 has been kept constant and for a
polymer chain withN540 for different LP$40,80,120,60,200%.
All the 120 curves corresponding to differentkP@1.0,2.4#, N, and
L coalesce. The inset shows a scaling plot ofS(k,t) for a polymer
with N540 in a simulation box withL5120 with an exponent
x53.
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Gaussian chains thatS(q)52N2u24@exp(2u2)211u2# @2#,
whereu5(Rgq)2, this can be written as

D5
kBT

hp E
2pRg /L

q0Rg
dy@exp~2y2!211y2#y25. ~7!

Evaluating the integral and assuming thatq0Rg@1, we ar-
rive at @16#

D5
kBT

2hp
$2 ln~Rg /L !1const1O„~Rg /L !2

…%. ~8!

This shows that extractingnD in the ‘‘traditional’’ sense in
the thermodynamic limitL→` is no longer possible.

To numerically study the scaling ofD without any ap-
proximations, we determinedD for eachNP@20,80# with
different values ofL. For instance, forN530 we considered
the casesLP$60,90,120,150,180,210,240%. For everyN, we
examined the behavior ofD as a function of ln(1/L), and

found that the behavior indeed is linear. To estimate the ex-
ponentnD in terms of effective diffusion coefficients, we
chose cutoff valuesLcutP$102,103,104,105,106%, and ex-
trapolated a valueD(N,Lcut) for each chain size and cutoff.
If the data comply with Eq.~8!, we should, when plotting
D(N,Lcut) vs lnN, obtain a set of equally spaced straight
lines. Each line corresponds to a certain cutoff, and the lines
should all have the same slopeA. As can be seen in Fig. 2,
this indeed holds within the statistical uncertainties of our
data. Moreover, a quantitative comparison with Eq.~8! yields
a predictionD50.2s2tLJ

21ln(Rg /L). Our numerical data sug-
gest thatD50.1s2tLJ

21ln(N/L), in excellent agreement with
our mean-field type of analytic approximation. Most impor-
tantly, Fig. 2 confirms the prediction of logarithmic scaling
of D with N, which means thatnD50. To quantify this, we
can extract the exponentnD from lnD(N,Lcut) vs lnN: for
large values ofL, we should have lnD;2nDln N. The results
in Fig. 2 show thatnD decreases steadily withL as it should.
For the largestLcut studied here, we findnD'0.0560.05.

The analysis above reveals the reason for the suggested
breakdown of scaling in Refs.@9,10#. While the resultx52
is correct, as verified here, the results in the previous studies
for nD are incorrect because the exponent has been extracted
without proper consideration of the finite-size effects@17#.
Thus, we can conclude that dynamical scaling holds for 2D
polymers with x52, n53/4, and nD50. Intuitively, this
should be the case: in 2D and 3D dilute polymer solutions,
HIs are expected to display so-called nondraining behavior
@1,10#, i.e., solvent particles within the polymer coil will re-
main inside the coil. From the solvent point of view, the
polymer coil is an inpenetrable obstacle. In three dimensions,
nondraining behavior means that the diffusion coefficient of
a polymer scales with its size as any spherical object, i.e., it
will be inversely proportional to the size of the polymer
(Rg). Analogously, in two dimensions the c.m. diffusion co-
efficient of a polymer chain should behave like that of a
circular disk, i.e., depend logarithmically on its sizeRg and
on the system sizeL.

FIG. 2. The dependence ofD on N for different cutoffsLcut .
The lines correspond toLcutP$102,103,104,105,106% from bottom
to top.

FIG. 3. The convergence ofD(t) vs time for systems with dif-
ferentN andL. The diffusion coefficients have been computed us-
ing the memory expansion method@13#. The convergence has also
been checked using the conventional mean squared distance vs time
analysis. We have explicitly ensured that the mean squared distance
depends linearly on time in the regime where the memory expan-
sion seems to have converged; i.e.,^@rW(t)2rW(0)#2&;t1 for the
time-dependent c.m. position of the polymer.
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Finally, we wish to discuss the issue of long-time tails in
2D diffusion. In the presence of the HI it has been
shown that the velocity autocorrelation functionf(t)
[^vW i(t1t8)•vW i(t8)&;t21 @18#, or f(t);@ tAln(t)#21 @19#,
which means that rigorously speaking,D is not well defined
in two dimensions. This would seem to invalidate the present
scaling arguments. However, there are several ways to re-
solve this problem. A standard method is to view the diffu-
sion coefficients in two dimensions as time-dependent quan-
tities D(t) @19#, from which one can define effective values
of D[D(t f) at some finite timet f . In the present case, the
issue of long-time tails is settled by recognizing that in dy-
namical scaling, the absolute values of the diffusion coeffi-
cients are irrelevant: only the behavior ofD as a function of
the chain or system size matters. Hence, we can use such
effective values provided that they have been determined in a
consistent way. To this end, we have determinedD ’s over a
time interval where the coefficients have converged within
numerical error. More precisely, assumingD;,D

2 /tD , where
,D is the distance over which the chain diffuses during the
time interval tD , the diffusion coefficients have been mea-
sured at a point where the chain has diffused a scaled dis-
tance,D /Rg52 –4. The convergence ofD(t) on these time
scales is demonstrated in Fig. 3 for systems with different
values ofN andL.

In conclusion, we have applied the MK method to a dilute
2D polymer solution. The method itself has proved to be an
efficient tool for studies of macromolecular systems, espe-
cially in the dilute limit where the computational cost is
mainly due to the explicit solvent. The technique has enabled
us—at a moderate computational cost—to study system sizes
that have not been previously amenable to simulations. This
approach together with careful consideration of finite-size
effects has allowed us to solve the controversy regarding the
dynamical scaling of dilute polymer solutions in two dimen-
sions with full HIs. We have found, in contrast to previous
studies @9,10#, that the exponent relationx521nD /n is
valid within numerical error. This justifies the scaling hy-
pothesis, and shows that the anomalous exponentx52 found
in previous studies is due to the logarithmic scaling ofD
with N.
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