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Dynamics and scaling of two-dimensional polymers in a dilute solution
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The breakdown of dynamical scaling for a dilute polymer solution in two dimensions has been suggested by
Shannon and CholPhys. Rev. Lett79, 1455(1997)]. However, we show here through extensive computer
simulations that dynamical scaling holds when the relevant dynamical quantities are properly extracted from
finite systems. To verify dynamical scaling, we present results based on mesoscopic simulations in two dimen-
sions for a polymer chain in a good solvent with full hydrodynamic interactions. We also present analytical
arguments for the size dependence of the diffusion coefficient and find excellent agreement with the present
large-scale simulations.
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The dynamics of polymer chains has attracted attentiomvhere x is the dynamical scaling exponentlated to the
for decades already. In three dimensions, polymer dynamicsther exponents through the relation
exhibits rich and complex behavior which depends on the
solvent conditions and polymer concentratjdr?]. The two- X=2+vplv. 3
dimensional case, however, has attracted much less attention.
Recently, it has been realized that it has important applicaThis is valid fork e (27/Ry,2m/a), wherea is the size of a
tions in the field of colloids and biomolecules. Examplesmonomer. Equation&) and (3) are the cornerstones of dy-
include the 2D diffusion of DNA oligonucleotides confined namical scaling of polymers.
to interfaceq 3] and the lateral diffusion of lipids and pro- In the purely dissipative case, the values of the scaling
teins along biological interfacdd] such as cell membranes. exponents for polymer chains are well understf@id In the
Further, the dynamics of polymers in two dimensions is ofdilute limit the simple Rouse model gives=1/2 and v
major importance in thin films thinner the size of the poly- =1. When proper volume exclusion is taken into account,
mer. Wetting, surface adhesion, and flow in confined geom»=3/4 in two dimensions and=3/5 in three dimensions,
etries are exampld$] of such problems. while vp=1 still holds for dilute 3D systems and fal
An important feature of essentially all the 2D diffusion polymer concentrations in two dimensiof€.
processes in soft matter is that they take place in a solvated However, when the HI is taken into account, the situation
environment, which implies that the role of thdrody- becomes different. While in 3D theory and numerical simu-
namic interaction(HI) cannot be disregarded. It originates lations agree with the prediction of the Zimm equations that
from interactions mediated by the solvent in the presence of= vy (i.e., x=3) [7,8], in two dimensions the situation is
momentum conservation. In three dimensions the effects déss clear. It has been established both theoretifa)B} and
hydrodynamics are well understood: it is well known that thecomputationally [9,10] that in good solvent conditions
dynamics of polymers in dilute solution is well described by y=3/4 still holds in two dimensions. The situation with is
the Zimm mode(2]. In two dimensions, however, the situa- more subtle. Using lattice-gas simulations Vianney and Koel-
tion is more subtle as will be discussed below. man [10] found v5=0.78+0.05. The molecular dynamics
The dynamics of polymer chains is described by the(MD) simulations ofS(k,t) by Shannon and Chofg], in
theory of dynamical scalinf]. The two key quantities are tum, gavex=2 which implies thatr, =0, if Eq. (3) holds.
the radius of gyratiorR, and the center-of-mags.m) dif-  However, from their MD data fob vs N they concluded that
fusion coefficientD of the chain. In the dilute limit, as a vp>0 thus contradicting the scaling law. They also solved
function of the degree of polymerizatidw, they follow the  the Zimm equations numerically in two dimensions and veri-
scaling relation®Ry~N" andD~N""?, with scaling expo-  fied the result thak=2, but found that nowrp<0 [9].
nentsy andvp , respectively. Another central quantity is the These results prompted the authors of R@fto suggest that
intermediate scattering function defined as dynamical scaling i®rokenfor 2D polymers. Essentially, the
very basis of polymer dynamics is being questioned.
. . - In this paper, our objective is to determine the validity of
S(k-'f):(l/'\l);1 (explik-[Fm(t) =Fa(0)]}), (1) dynamical scaling for 2D polymers. To this end, we extract
’ the exponents, vp, andx through extensive mesoscopic
- simulations of a 2D polymer in a good solvent with the full
wherek is a wave vector, anff’;}'s are the positions of the  H| included. To complement this, we briefly describe ana-

monomers. This function should scale[2$ lytic arguments which show that when finite-size effects are
taken into account, the scaling Dfwith respect ta\ is truly
S(k,t) =k~ Y"F(tk¥), (2 logarithmic, leading ta/p =0 and thus to<=2. Our humeri-
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cal results verify both that=2 and the predicted logarith- 2
mic scaling ofD. Thus we conclude that dynamical scalisg 2

obeyed in two dimensions.

To overcome the significant difficulties in simulating
polymers with full Hls, we employ a novel mesoscopic
simulation method introduced by Malevanets and Kapral

(MK) [11,12. It is essentially a hybrid molecular dynamics 0 ——]
scheme, where the polymer chain is treated microscopically 5 0 20 4,810?0 80
while the solvent obeys coarse-grained dynamics. In practice

this idea is implemented by choosing the monomer-monomer 0

and monomer-solvent interactions as in MD simulations, 0 20 40k2'0r60 80

while the conservative interactions between the solvent
particles are absent. This description preserves the hydro- FIG. 1. Scaling ofS(k,t) for N € {30,40,60,80,120,15Gor sys-
dynamic modes through so-called collision rules, and allowsems where the ratie./Ry>10 has been kept constant and for a
for a major speedup compared to other techniques such g@slymer chain withN=40 for different L € {40,80,120,60,200
MD. All the 120 curves corresponding to differen&[1.0,2.4, N, and
To describe the dynamics of the coarse-grained solvent, coalesce. The inset shows a scaling ploSg,t) for a polymer
time is partitioned into segmentsand the simulation box is Wwith N=40 in a simulation box withL =120 with an exponent
divided into collision volumes or cells. The effective inter- X=3.
actions between the solvent molecules take place at each
this is called a collision. In a collision the velocities of the boundary conditions were employed for all system sizes. The
solvent particles are transformed accordingstét+7)=V  c.m. diffusion coefficientD was determined using the
+6-[5;(t) _\7]_ Hered, is the velocity of the particlg Vis Mmemory expansion method of R§13]. _As shown explicitly
the average velocity of all the particles in the cell the particleln Ref-[13], the memory expansion gives a result fully con-
i belongs to, ands is a random rotation matrix chosen for sistent with the mean square displacement analysis, but is
that particular cell. It can be showi1] that this multipar- numerically more efficient. _
ticle collision dynamics conserves the momentum and en- First, we checked the scaling @, with Ne[20,15Q
ergy in each collision volume, and thus gives a correct del14] and found thatv=0.75-0.02, in excellent agreement
scription of the hydrodynamics of the velocity field. with Fheory. Next,.we_compgted t_he |.ntermed|ate scattering
Our model system consists of a polymer chain with function S(k,t) wh|ch_|s depicted in Fig. 1 Our data show
monomers immersed in a 2D coarse-grained solvent. Thi€ best collapse witlx=2.0+0.1. We find thatall the
mass of a solvent particle is setitp and the monomer mass datg?etscorrespondlng to differeni and L coalesce when
is 2m. The monomer-monomer and monomer-solvent interkRg >1, as they should. This confirms the MD results of
actions are described by a truncated Lennard-Jdndspo- ~ Shannon and Cho}g], and shows that the 3D Zimm result

tential: x=3 is invalid in two dimensions.
Next, we address the crucial question of the value of the
4e[(alr)P—(olr)8]+e, r<2Yes exponentvp . In the 3D cas€8], the finite-size dependence
Ups(r)= 0 LY (4 of DisD~1/L. Hence, in principle it is easy to determibe

for a fixed chain lengttN by running a series of simulations
Here o and e together withm define the LJ unit system, for different values ot, and then extrapolating fo— . By
where the unit of time is defined ag,= oym/e. In addition ~ repeating this procedure for several valuesipfhe exponent

to the LJ potential, there is an attractive finite extensible¥p can be determined.

nonlinear elastic potential between the nearest-neighbor However, in the 2D case the finite-size effects are much
more subtle due to the infinite range of the HI. We have

monomers:
calculatedD analytically for a 2D polymer in a finite system

Uc(r)=—(aR3/2)In(1-r?/R3), (5  of sizeL using the approaches presented in RE8s9,15.

Here we shall assume that a fini exists in the limitt

wherea=7eo 2 andRy=20. — o (see the discussion belpwnd follow Ref.[15] starting

The solvent density was sete=0.5810 "2, and the tem-  from Eq. (3.6):
perature wakgT =1.2¢, yielding good solvent conditions.
The equations of motion were integrated using the velocity 5
Verlet algorithm with a time stept=0.005r ;. The choice _ kel a2slim k23 (K-292 ()
of the parameters that determine the collision dynamics fixes N2pA ac[Z7L,q0l 0 =
the properties of the coarse-grained solvent, e.g., its viscos-
ity. Here we set the collision time to= 7 ; and the linear
size of the cell td,=20. The random rotation angles were whereA is the areay the solvent viscosityS(q) the static
chosen from a uniform distribution i{®,27). The size of the structure factorg, a cutoff implying that intermediate wave
polymer chainN varies from 20 to 150 monomers, and the vectors are considered, a&l a member of an orthonormal
linear system sizé& ranges from 46 up to 42@. Periodic  set with €2=g/q. Using the well-known result for long
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1.2 ' . \ : 03
1 = BERRRES m—»-r_<_‘ = 1
Tl T 0.2
““»h__\“»\ 3 =
0.8/ St : S
_ el = 0.15 —— N=25,L=226
0.6 e 1 R - N=40,L =160
FhR e N=40,L =280
”“’*--»_,‘_,,,*‘_ | N=50,L =200
0.4 e % 1000 , 2000 3000
B~ W t
0.2t t’”'““-*--’_‘“\ 1 FIG. 3. The convergence @(t) vs time for systems with dif-
”"°““'---»m,,,_\_ ferentN and L. The diffusion coefficients have been computed us-
ing the memory expansion meth@@3]. The convergence has also
0 3 3 5 4 45 been checked using the conventional mean squared distance vs time
In N analysis. We have explicitly ensured that the mean squared distance
depends linearly on time in the regime where the memory expan-
e .. sion seems to have converged; i.4.i'(t)—r(0)]?)~t! for the
0 o ST Se = time-dependent c.m. position of the polymer.
e T found that the behavior indeed is linear. To estimate the ex-
-0.5¢ e 1 ponentvy in terms of effective diffusion coefficients, we
L TR chose cutoff valued e {10?,10°,10*,10°,1¢f}, and ex-

Q ”maa trapolated a valu®(N,L,,) for each chain size and cutoff.
-1 DR S 1 If the data comply with Eq(8), we should, when plotting
= i B D(N,L¢,0) vs InN, obtain a set of equally spaced straight

15 e | lines. Each line corresponds to a certain cutoff, and the lines
=15 \“*xm\ should all have the same slope As can be seen in Fig. 2,
e this indeed holds within the statistical uncertainties of our
- TEe | data. Moreover, a quantitative comparison with EB).yields
[ S a predictionD=O.2027[Jlln(Rg/L). Our numerical data sug-
u gest thatD =0.10?7 In(N/L), in excellent agreement with
-2.5 : ‘ ‘ ‘ our mean-field type of analytic approximation. Most impor-
3 35 In N 4 4.5 tantly, Fig. 2 confirms the prediction of logarithmic scaling

of D with N, which means thaty=0. To quantify this, we
FIG. 2. The dependence &f on N for different cutoffsL,. can extract the exponeniy from InD(N,L.,) vs InN: for
The lines correspond th,.e {107,10°,10",10°, 1%} from bottom  large values of., we should have ID~—vpIn N. The results

to top. in Fig. 2 show thatvy decreases steadily withas it should.

For the largest . ,; studied here, we findp~0.05+0.05.
Gaussian chains th&(q)=2N?u"*[exp(~ud)—1+u?] [2], The analysis above reveals the reason for the suggested
whereu=(qu)2, this can be written as breakdown of scaling in Ref$9,10]. While the resulix=2

T (R is correct, as verified here, the results in the previous studies
_ Bl |70 dy[exp( —y?)— 1+y2]y 5. @) fo_r vp are incorrect pecau_se the exponent h_as been extracted
N7 J2ary L without proper consideration of the finite-size effeftd].
Thus, we can conclude that dynamical scaling holds for 2D
Evaluating the integral and assuming tligRy,>1, we ar-  polymers withx=2, v=3/4, and vp=0. Intuitively, this
rive at[16] should be the case: in 2D and 3D dilute polymer solutions,
Hls are expected to display so-called nondraining behavior
[1,10], i.e., solvent particles within the polymer coil will re-
main inside the coil. From the solvent point of view, the
polymer coil is an inpenetrable obstacle. In three dimensions,
This shows that extractingp in the “traditional” sense in  nondraining behavior means that the diffusion coefficient of
the thermodynamic limit. — is no longer possible. a polymer scales with its size as any spherical object, i.e., it
To numerically study the scaling dd without any ap- will be inversely proportional to the size of the polymer
proximations, we determined® for eachNe[20,80 with  (R,). Analogously, in two dimensions the c.m. diffusion co-
different values oL. For instance, foN=30 we considered efficient of a polymer chain should behave like that of a
the cases € {60,90,120,150,180,210,240For everyN, we  circular disk, i.e., depend logarithmically on its sig and
examined the behavior dd as a function of In(1/), and on the system sizk.

_ keT 2
D—m{—In(Rg/L)+constrkO((Rg/L) )} (8)
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Finally, we wish to discuss the issue of long-time tails in In conclusion, we have applied the MK method to a dilute
2D diffusion. In the presence of the HI it has been2D polymer solution. The method itself has proved to be an
shown that the velocity autocorrelation functio(t)  efficient tool for studies of macromolecular systems, espe-
=(i(t+t")-0i(t"))~t* [18], or p()~[tVIn®] * [19],  cially in the dilute limit where the computational cost is
which means that rigorously speakiri,is not well defined  mainly due to the explicit solvent. The technique has enabled
in two dimensions. This would seem to invalidate the presenfis__at a moderate computational cost—to study system sizes

scaling arguments. However, there are several ways to r : : ; ;
solve this problem. A standard method is to view the diffu-%at have not been previously amenable to simulations. This

sion coefficients in two dimensions as time-dependent quarfe—‘pproaCh together with careful consideration of finitv_a-size
tities D(t) [19], from which one can define effective values effects has allowed us to solve the controversy regarding the

of D=D(t;) at some finite time; . In the present case, the d_ynaml(_:al scaling of dilute polymer s_,olutlons in two dlrr_}en-
issue of |0ng-time tails is settled by recognizing that in dy-SlonS with full HIs. We have found, in contrast to previous
namical scaling, the absolute values of the diffusion coeffistudies[9,10], that the exponent relatiorR=2+vp/v is
cients are irrelevant: only the behavior Bfas a function of  valid within numerical error. This justifies the scaling hy-
the chain or system size matters. Hence, we can use su@thesis, and shows that the anomalous expaxert found
effective values provided that they have been determined in o previous studies is due to the |ogarithmic Sca“ngD)f
consistent way. To this end, we have determiesl over a  ith N.

time interval where the coefficients have converged within

numerical error. More precisely, assumingféltD , Where This work was supported in part by the Academy of Fin-
{p is the distance over which the chain diffuses during theand through its Center of Excellence Program and Grant No.
time intervalt[_), the diffusion co_efficient; have been mea- 80246(1.V.), and by the National Graduate School in Mate-
sured at a point where the chain has diffused a scaled distals PhysicqE.F). Computational resources provided by the
tancel, /Ry=2—4. The convergence @i(t) on these time  rinnish T Center for Science and the DC$EDU) Super-

scales is demonstrated in Fig. 3 for systems with diﬁere”Eluster in Odense are gratefully acknowledged
values ofN andL. '
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