2,487 research outputs found

    Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    Full text link
    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C24_{24}H12+m+_{12+m}^+ m=07m=0-7, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16_{16}H10+m+_{10+m}^+, m=0m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.Comment: 10 pages, 5 figure

    Statistical vibrational autodetachment and radiative cooling rates of para-benzoquinone

    Get PDF
    We report measurements of the statistical vibrational autodetachment (VAD, also called thermionic emission) and radiative cooling rates of isolated para-benzoquinone (pBQ, C6H4O2) radical anions using the cryogenic electrostatic ion storage ring facility DESIREE. The results are interpreted using master equation simulations with rate coefficients calculated using statistical detailed balance theory. The VAD rate is determined by measuring the time-dependent yield of neutral pBQ due to spontaneous electron emission from a highly-excited ensemble of anions formed in an electron-attachment ion source. Competition with radiative cooling quenches the VAD rate after a critical time of τc = 11.00(5) ms. Master equation simulations which reproduce the VAD yield provide an estimate of the initial effective vibrational temperature of the ions of 1100(20) K, and provide insight into the anion formation scenario. A second measurement of the radiative cooling rate of pBQ− stored for up to 0.5 s was achieved using time-dependent photodetachment action spectroscopy across the 2Au ← 2B2g and 2B2u ← 2B2g transitions. The rate at which hot-band contributions fade from the action spectrum is quantified by non-negative matrix factorisation. This is found to be commensurate with the average vibrational energy extracted from the simulations, with 1/e lifetimes of 0.16(3) s and 0.1602(7) s, respectively. Implications for astrochemistry are discussed

    The Mass-Radius Relationship for Very Low Mass Stars: Four New Discoveries from the HATSouth Survey

    Get PDF
    We report the discovery of four transiting F-M binary systems with companions between 0.1-0.2 Msun in mass by the HATSouth survey. These systems have been characterised via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters, and equating spectroscopic primary star rotation velocity with spin-orbit synchronisation. These new very low mass companions are HATS550-016B (0.110 -0.006/+0.005 Msun, 0.147 -0.004/+0.003 Rsun), HATS551-019B (0.17 -0.01/+0.01 Msun, 0.18 -0.01/+0.01 Rsun), HATS551-021B (0.132 -0.005/+0.014 Msun, 0.154 -0.008/+0.006 Rsun), HATS553-001B (0.20 -0.02/+0.01 Msun, 0.22 -0.01/+0.01 Rsun). We examine our sample in the context of the radius anomaly for fully-convective low mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5% systematic deviation between the measured radii and theoretical isochrone models.Comment: 17 pages, 8 figures, accepted for publication in MNRA
    corecore