568 research outputs found

    The impact of xanthine oxidase (XO) on hemolytic diseases

    Get PDF
    Hemolytic diseases are associated with elevated levels of circulating free heme that can mediate endothelial dysfunction directly via redox reactions with biomolecules or indirectly by upregulating enzymatic sources of reactive species. A key enzymatic source of these reactive species is the purine catabolizing enzyme, xanthine oxidase(XO) as the oxidation of hypoxanthine to xanthine and subsequent oxidation of xanthine to uric acid generates superoxide (O2•-) and hydrogen peroxide (H2O2). While XO has been studied for over 120 years, much remains unknown regarding specific mechanistic roles for this enzyme in pathologic processes. This gap in knowledge stems from several interrelated issues including: 1) lethality of global XO deletion and the absence of tissue-specific XO knockout models have coalesced to relegate proof-of-principle experimentation to pharmacology; 2) XO is mobile and thus when upregulated locally can be secreted into the circulation and impact distal vascular beds by high-affinity association to the glycocalyx on the endothelium; and 3) endothelial-bound XO is significantly resistant (\u3e 50%) to inhibition by allopurinol, the principle compound used for XO inhibition in the clinic as well as the laboratory. While it is known that circulating XO is elevated in hemolytic diseases including sickle cell, malaria and sepsis, little is understood regarding its role in these pathologies. As such, the aim of this review is to define our current understanding regarding the effect of hemolysis (free heme) on circulating XO levels as well as the subsequent impact of XO-derived oxidants in hemolytic disease processes

    Identification of Patients with Family History of Pancreatic Cancer - Investigation of an NLP System Portability

    Get PDF
    In this study we have developed a rule-based natural language processing (NLP) system to identify patients with family history of pancreatic cancer. The algorithm was developed in a Unstructured Information Management Architecture (UIMA) framework and consisted of section segmentation, relation discovery, and negation detection. The system was evaluated on data from two institutions. The family history identification precision was consistent across the institutions shifting from 88.9% on Indiana University (IU) dataset to 87.8% on Mayo Clinic dataset. Customizing the algorithm on the the Mayo Clinic data, increased its precision to 88.1%. The family member relation discovery achieved precision, recall, and F-measure of 75.3%, 91.6% and 82.6% respectively. Negation detection resulted in precision of 99.1%. The results show that rule-based NLP approaches for specific information extraction tasks are portable across institutions; however customization of the algorithm on the new dataset improves its performance

    DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx

    Get PDF
    In Electronic Health Records (EHRs), much of valuable information regarding patients’ conditions is embedded in free text format. Natural language processing (NLP) techniques have been developed to extract clinical information from free text. One challenge faced in clinical NLP is that the meaning of clinical entities is heavily affected by modifiers such as negation. A negation detection algorithm, NegEx, applies a simplistic approach that has been shown to be powerful in clinical NLP. However, due to the failure to consider the contextual relationship between words within a sentence, NegEx fails to correctly capture the negation status of concepts in complex sentences. Incorrect negation assignment could cause inaccurate diagnosis of patients’ condition or contaminated study cohorts. We developed a negation algorithm called DEEPEN to decrease NegEx’s false positives by taking into account the dependency relationship between negation words and concepts within a sentence using Stanford dependency parser. The system was developed and tested using EHR data from Indiana University (IU) and it was further evaluated on Mayo Clinic dataset to assess its generalizability. The evaluation results demonstrate DEEPEN, which incorporates dependency parsing into NegEx, can reduce the number of incorrect negation assignment for patients with positive findings, and therefore improve the identification of patients with the target clinical findings in EHRs

    Gastrointestinal Parasites of Two Populations of Arctic Foxes (<em>Vulpes lagopus</em>) from Northeast Greenland

    Get PDF
    Parasitological examination of 275 faecal samples from Arctic foxes (Vulpes lagopus) collected at Zackenberg Valley and Karupelv Valley in north-east Greenland from 2006 to 2008 was conducted using sieving and microscopy. Overall, 125 (45.5%) samples contained parasite eggs of Taenia crassiceps, Taenia serialis, Toxascaris leonina, Eucoleus boehmi, Physalopteridae and Ancylostomatidae, and Strongyloides-like larvae. As long-term ecological studies are conducted at both sampling locations, the present findings constitute a baseline data set for further parasitological monitoring

    Nitrosylcobalamin Potentiates the Anti-Neoplastic Effects of Chemotherapeutic Agents via Suppression of Survival Signaling

    Get PDF
    Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malignant cell lines. Chemotherapeutic agents often simultaneously induce an apoptotic signal and activation of NF-kappaB, which has the undesired effect of promoting cell survival. The specific aims of this study were to 1) measure the anti-tumor effects of NO-Cbl alone and in combination with conventional chemotherapeutic agents, and to 2) examine the mechanism of action of NO-Cbl as a single agent and in combination therapy.Using anti-proliferative assays, electrophoretic mobility shift assay (EMSA), immunoblot analysis and kinase assays, we demonstrate an increase in the effectiveness of chemotherapeutic agents in combination with NO-Cbl as a result of suppressed NF-kappaB activation.Eighteen chemotherapeutic agents were tested in combination with NO-Cbl, in thirteen malignant cell lines, resulting in a synergistic anti-proliferative effect in 78% of the combinations tested. NO-Cbl pre-treatment resulted in decreased NF-kappaB DNA binding activity, inhibition of IkappaB kinase (IKK) enzymatic activity, decreased AKT activation, increased caspase-8 and PARP cleavage, and decreased cellular XIAP protein levels.The use of NO-Cbl to inhibit survival signaling may enhance drug efficacy by preventing concomitant activation of NF-kappaB or AKT

    Obesity Accelerates Acute Promyelocytic Leukemia in Mice and Reduces Sex Differences in Latency and Penetrance

    Get PDF
    Objective: Obesity has emerged as a prominent risk factor for multiple serious disease states, including a variety of cancers, and is increasingly recognized as a primary contributor to preventable cancer risk. However, few studies of leukemia have been conducted in animal models of obesity. This study sought to characterize the impact of obesity, diet, and sex in a murine model of acute promyelocytic leukemia (APL). Methods: Male and female C57BL/6J.mCG+/PR mice, genetically predisposed to sporadic APL development, and C57BL/6J (wild type) mice were placed on either a high-fat diet (HFD) or a low-fat diet (LFD) for up to 500 days. Results: Relative to LFD-fed mice, HFD-fed animals displayed increased disease penetrance and shortened disease latency as indicated by accelerated disease onset. In addition, a diet-responsive sex difference in APL penetrance and incidence was identified, with LFD-fed male animals displaying increased penetrance and shortened latency relative to female counterparts. In contrast, both HFD-fed male and female mice displayed 100% disease penetrance and insignificant differences in disease latency, indicating that the sexual dimorphism was reduced through HFD feeding. Conclusions: Obesity and obesogenic diet promote the development of APL in vivo, reducing sexual dimorphisms in disease latency and penetrance

    Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    Get PDF
    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services

    Loss of cardiomyocyte CYB5R3 impairs redox equilibrium and causes sudden cardiac death

    Get PDF
    Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.These studies were supported by NIH grants R35 HL 161177 (to ACS), R01 HL 133864 (to ACS), R01 HL 128304 (to ACS), R41 HL15098 (to GS), R01 GM 122091 (to PHT), GM125944 (to FJS), R01 DK112854 (to FJS), R21 NS112787 (to MF), NS121706 (to YLW), EB023507 (to YLW), F31 HL149241 (to HMS), and F31 HL151173 (to JCG). Support was also provided by American Heart Association grants 19EIA34770095 (to ACS), AHA 18CDA34140024 (to YLW), and 19PRE34380152 (to NTC); the Spanish Ministry of Health (grant FIS PI17-01286); Junta de AndalucĂ­a BIO-177 and the FEDER Funding Program from the European Union and CIBERER (U729)-ISCIII (to PN); Department of Defense W81XWH1810070 (to YLW); and Vitalant. This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483.Peer reviewe

    Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma

    Get PDF
    SummaryWe have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds
    • …
    corecore