5,865 research outputs found
Hierarchical Bin Buffering: Online Local Moments for Dynamic External Memory Arrays
Local moments are used for local regression, to compute statistical measures
such as sums, averages, and standard deviations, and to approximate probability
distributions. We consider the case where the data source is a very large I/O
array of size n and we want to compute the first N local moments, for some
constant N. Without precomputation, this requires O(n) time. We develop a
sequence of algorithms of increasing sophistication that use precomputation and
additional buffer space to speed up queries. The simpler algorithms partition
the I/O array into consecutive ranges called bins, and they are applicable not
only to local-moment queries, but also to algebraic queries (MAX, AVERAGE, SUM,
etc.). With N buffers of size sqrt{n}, time complexity drops to O(sqrt n). A
more sophisticated approach uses hierarchical buffering and has a logarithmic
time complexity (O(b log_b n)), when using N hierarchical buffers of size n/b.
Using Overlapped Bin Buffering, we show that only a single buffer is needed, as
with wavelet-based algorithms, but using much less storage. Applications exist
in multidimensional and statistical databases over massive data sets,
interactive image processing, and visualization
Origin, structure and geochemistry of a rock glacier near Don Juan Pond, Wright Valley, Antarctica
The South Fork of Wright Valley contains one of the largest rock glaciers in the McMurdo Dry Valleys, Antarctica, stretching 7 km from the eastern boundary of the Labyrinth and terminating at Don Juan Pond (DJP). Here, we use results from ground-penetrating radar (GPR), qualitative field observations, soil leaching analyses and X-ray diffraction analyses to investigate rock glacier development. The absence of significant clean ice in GPR data, paired with observations of talus and interstitial ice influx from the valley walls, support rock glacier formation via talus accumulation. A quartz-dominated subsurface composition and discontinuous, well-developed desert pavements suggest initial rock glacier formation occurred before the late Quaternary. Major ion data from soil leaching analyses show higher salt concentrations in the rock glacier and talus samples that are close to hypersaline DJP. These observations suggest that DJP acts as a local salt source to the rock glacier, as well as the surrounding talus slopes that host water track systems that deliver solutes back into the lake, suggesting a local feedback system. Finally, the lack of lacustrine sedimentation on the rock glacier is inconsistent with the advance of a glacially dammed lake into South Fork during the Last Glacial Maximum
Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases
Fifty-two magnetic white dwarfs have been identified in spectroscopic
observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002
and the end of 2004, including Data Releases 2 and 3. Though not as numerous
nor as diverse as the discoveries from the first Data Release, the collection
exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two
new unusual atomic DQA examples, a molecular DQ, and five stars that show
hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may
be the most strongly magnetic white dwarf yet discovered. Analysis of the
photometric data indicates that the magnetic sample spans the same temperature
range as for nonmagnetic white dwarfs from the SDSS, and support is found for
previous claims that magnetic white dwarfs tend to have larger masses than
their nonmagnetic counterparts. A glaring exception to this trend is the
apparently low-gravity object SDSSJ0933+1022, which may have a history
involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical
Journa
Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation
[EN] The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. The modeling and experimental results have been combined to provide insight into near-field spray dynamics.Authors acknowledge that part of this work was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF (TRA2014-59483-R) project.Pandal, A.; Pastor Enguídanos, JM.; Payri, R.; Kastengren, A.; Duke, DJ.; Matusik, KE.; Giraldo-Valderrama, JS.... (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuel and Lubricants. 10(2):1-9. doi:10.4271/2017-01-0859S1910
Lessons on direct seeding to restore Neotropical savanna
Made available in DSpace on 2019-08-20T00:37:11Z (GMT). No. of bitstreams: 1
1s2.0S0925857419302538main.pdf: 860572 bytes, checksum: 311484784c0c84dd5129dd180114070c (MD5)
Previous issue date: 2019bitstream/item/201069/1/1-s2.0-S0925857419302538-main.pd
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
Recommended from our members
Electron-ion recombination measurements of Fe7+, Fe8+, Fe13+ motivated by active galactic nuclei x-ray absorption features
Recent spectroscopic models of active galactic nuclei have indicated that the recommended electron-ion recombination rate coefficients for iron ions with partially filled Mshells are incorrect in the temperature range where these ions form in photoionized plasmas. We have investigated this experimentally for Fe7+ forming Fe6+, Fe8+ forming Fe7+, and Fe13+ forming Fe12+. The recombination rate coefficient was measured employing the electron-ion merged beams method at the Heidelberg heavy-ion storage-ring TSR. The measured energy range encompassed at least all dielectronic recombination (DR) resonances associated with core excitations within the M-shell of the parent ions. Already in our first measurement, that is for Fe13+, we find unusually strong DR resonances at low electron-ion collision energies leading to low temperature plasma DR rate coefficients orders of magnitude larger than the recommended rate coefficien
Recommended from our members
Dielectronic Recombination In Active Galactic Nuclei
XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII
- …