57 research outputs found

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    There are no author-identified significant results in this report

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    The author has identified the following significant results. Change in the vegetative structure was taking place in the Black Hills. Temporal analysis of the areal extent of open meadows was accomplished using black and white and color infrared aerial photography. A reduction of nearly 1100 hectares of open meadows was determined using photointerpretation. Techniques were developed for the management of meandering lakes, including use of LANDSAT imagery for continuous monitoring, classification of hydrophytes on low altitude CIR imagery, and planning and evaluation of improvements and multiple uses on aerial photography and photo mosaics. LANDSAT data were analyzed statistically from small and entire study scene areas to determine the effect of soils stratifications of corn signatures. Band 5 early season and band 7 later season recorded the strongest evidence of the influence of soils on corn signatures. Significant strata were determined by a multiple range test

    Exploring the Switchgrass Transcriptome Using Second-Generation Sequencing Technology

    Get PDF
    Background: Switchgrass (Panicum virgatum L.) is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass makes whole genome sequencing a daunting task even with current technologies. Exploring the transcriptional landscape using next generation sequencing technologies provides a viable alternative to whole genome sequencing in switchgrass. Principal Findings: Switchgrass cDNA libraries from germinating seedlings, emerging tillers, flowers, and dormant seeds were sequenced using Roche 454 GS-FLX Titanium technology, generating 980,000 reads with an average read length of 367 bp. De novo assembly generated 243,600 contigs with an average length of 535 bp. Using the foxtail millet genome as a reference greatly improved the assembly and annotation of switchgrass ESTs. Comparative analysis of the 454-derived switchgrass EST reads with other sequenced monocots including Brachypodium, sorghum, rice and maize indicated a 70– 80 % overlap. RPKM analysis demonstrated unique transcriptional signatures of the four tissues analyzed in this study. More than 24,000 ESTs were identified in the dormant seed library. In silico analysis indicated that there are more than 2000 EST-SSRs in this collection. Expression of several orphan ESTs was confirmed by RT-PCR. Significance: We estimate that about 90 % of the switchgrass gene space has been covered in this analysis. This study nearl

    A multiple species approach to biomass production from native herbaceous perennial feedstocks

    Full text link
    • …
    corecore